Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neural Transm (Vienna) ; 127(4): 431-444, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32088764

RESUMEN

The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood-brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas Aferentes/metabolismo , Neuropéptidos/metabolismo , Nocicepción/fisiología , Transducción de Señal/fisiología , Ganglio del Trigémino/metabolismo , Animales , Humanos
2.
Cephalalgia ; 40(14): 1585-1604, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32811179

RESUMEN

BACKGROUND: Calcitonin gene-related peptide is recognized as a key player in migraine, yet the mechanisms and sites of calcitonin gene-related peptide action remain unknown. The efficacy of calcitonin gene-related peptide-blocking antibodies as preventative migraine drugs supports a peripheral site of action, such as the trigeminovasculature. Given the apparent disconnect between the importance of vasodilatory peptides in migraine and the prevailing opinion that vasodilation is an epiphenomenon, the goal of this study was to test whether vasodilation plays a role in calcitonin gene-related peptide-induced light aversive behavior in mice. METHODS: Systemic mean arterial pressure and light aversive behavior were measured after intraperitoneal administration of calcitonin gene-related peptide and vasoactive intestinal peptide in wild-type CD1 mice. The functional significance of vasodilation was tested by co-administration of a vasoconstrictor (phenylephrine, endothelin-1, or caffeine) with calcitonin gene-related peptide to normalize blood pressure during the light aversion assay. RESULTS: Both calcitonin gene-related peptide and vasoactive intestinal peptide induced light aversion that was associated with their effect on mean arterial pressure. Notably, vasoactive intestinal peptide caused relatively transient vasodilation and light aversion. Calcitonin gene-related peptide-induced light aversion was still observed even with normalized blood pressure. However, two of the agents, endothelin-1 and caffeine, did reduce the magnitude of light aversion. CONCLUSION: We propose that perivascular calcitonin gene-related peptide causes light-aversive behavior in mice by both vasomotor and non-vasomotor mechanisms.


Asunto(s)
Trastornos Migrañosos , Fotofobia , Animales , Cafeína , Péptido Relacionado con Gen de Calcitonina , Endotelina-1/toxicidad , Ratones , Fotofobia/inducido químicamente , Péptido Intestinal Vasoactivo
3.
Front Neurol ; 13: 874193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432179

RESUMEN

Migraine is the most common neurological disorder in the world, affecting 12% of the population. Migraine involves the central nervous system, trigeminal nerves and meninges. Recent advances have shown that targeting calcitonin gene-related peptide (CGRP) through either antibodies or small molecule receptor antagonists is effective at reducing episodic and chronic migraine episodes, but these therapeutics are not effective in all patients. This suggests that migraine does not have a singular molecular cause but is likely due to dysregulated physiology of multiple mechanisms. An often-overlooked part of migraine is the potential involvement of the immune system. Clinical studies have shown that migraine patients may have dysregulation in their immune system, with abnormal plasma cytokine levels either during the attack or at baseline. In addition, those who are immunocompromised appear to be at a higher risk of migraine-like disorders. A recent study showed that migraine caused changes to transcription of immune genes in the blood, even following treatment with sumatriptan. The dura mater is densely packed with macrophages, mast and dendritic cells, and they have been found to associate with meningeal blood vessels and trigeminal afferent endings. Recent work in mice shows activation and morphological changes of these cells in rodents following the migraine trigger cortical spreading depression. Importantly, each of these immune cell types can respond directly to CGRP. Since immune cells make up a large portion of the dura, have functional responses to CGRP, and interact with trigeminal afferents, CGRP actions on the dural immune system are likely to play key roles in migraine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA