Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(5): 101335, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688654

RESUMEN

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-ß1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación , Neoplasias Pancreáticas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802212

RESUMEN

Targetable alterations in cancer offer novel opportunities to the drug discovery process. However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expression and activation levels of 187 proteins, of which 137 were kinases and downstream substrates, were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins measured, all were statistically different in at least one comparison at the highest DMSO concentration, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to be statistically different in more than 5 cell lines, indicating heterogeneous response across models. These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target effects need to be carefully evaluated in pre-clinical drug screening and testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Dimetilsulfóxido/farmacología , Sistemas de Liberación de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biosíntesis , Transducción de Señal/efectos de los fármacos , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología
3.
Clin Proteomics ; 17: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32165870

RESUMEN

Reversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research. Here we investigated the impact of UV laser microdissection (UV LMD) and IR laser capture microdissection (IR LCM) on phosphoprotein abundance of key cancer signaling protein targets assessed by reverse-phase protein microarray (RPPA). Tumor epithelial cells from consecutive thin sections obtained from four high-grade serous ovarian cancers were harvested using either UV LMD or IR LCM methods. Phosphoprotein abundances for ten phosphoproteins that represent important drug targets were assessed by RPPA and revealed no significant differences in phosphoprotein integrity from those obtained using higher-energy UV versus the lower-energy IR laser methods.

4.
Br J Cancer ; 117(4): 494-502, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28664915

RESUMEN

BACKGROUND: The biological mechanisms underlying early- and advanced-stage epithelial ovarian cancers (EOCs) are still poorly understood. This study explored kinase-driven metabolic signalling in early and advanced EOCs, and its role in tumour progression and response to carboplatin-paclitaxel treatment. METHODS: Tumour epithelia were isolated from two independent sets of primary EOC (n=72 and 30 for the discovery and the validation sets, respectively) via laser capture microdissection. Reverse phase protein microarrays were used to broadly profile the kinase-driven metabolic signalling of EOC with particular emphasis on the LBK1-AMPK and AKT-mTOR axes. Signalling activation was compared between early and advanced lesions, and carboplatin-paclitaxel-sensitive and -resistant tumours. RESULTS: Advanced EOCs were characterised by a heterogeneous kinase-driven metabolic signature and decreased phosphorylation of the AMPK-AKT-mTOR axis compared to early EOC (P<0.05 for AMPKα T172, AMPKα1 S485, AMPKß1 S108, AKT S473 and T308, mTOR S2448, p70S6 S371, 4EBP1 S65, GSK-3 α/ß S21/9, FOXO1 T24/FOXO3 T32, and FOXO1 S256). Advanced tumours with low relative activation of the metabolic signature and increased FOXO1 T24/FOXO3 T32 phosphorylation (P=0.041) were associated with carboplatin-paclitaxel resistance. CONCLUSIONS: If validated in a larger cohort of patients, the decreased AMPK-AKT-mTOR activation and phosphorylation of FOXO1 T24/FOXO3 T32 may help identify carboplatin-paclitaxel-resistant EOC patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carboplatino/administración & dosificación , Carcinoma Epitelial de Ovario , Quimioterapia Adyuvante , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Epitelio/metabolismo , Femenino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/cirugía , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Paclitaxel/administración & dosificación , Fosforilación , Análisis por Matrices de Proteínas , Adulto Joven
5.
Proteomics ; 15(2-3): 365-73, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25311472

RESUMEN

Epithelial ovarian carcinoma (EOC) is a deadly disease, with a 5-year survival of 30%. The aim of the study was to perform broad-scale protein signaling activation mapping to evaluate if EOC can be redefined based on activated protein signaling network architecture rather than histology. Tumor cells were isolated using laser capture microdissection (LCM) from 72 EOCs. Tumors were classified as serous (n = 38), endometrioid (n = 13), mixed (n = 8), clear cell (CCC; n = 7), and others (n = 6). LCM tumor cells were lysed and subjected to reverse-phase protein microarray to measure the expression/activation level of 117 protein drug targets. Unsupervised hierarchical clustering analysis was utilized to explore the overall signaling network. ANOVA was used to detect significant differences among the groups (p < 0.05). Regardless of histology, unsupervised analysis revealed five pathway-driven clusters. When the EOC histotypes were compared by ANOVA, only CCC showed a distinct signaling network, with activation of EGFR, Syk, HER2/ErbB2, and SHP2 (p = 0.0007, p = 0.0021, p < 0.0001, and p = 0.0410, respectively). The histological classification of EOC fails to adequately describe the underpinning protein signaling network. Nevertheless, CCC presents unique signaling characteristics compared to the other histotypes. EOC may need to be characterized by functional signaling activation mapping rather than pure histology.


Asunto(s)
Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Ovario/patología , Mapas de Interacción de Proteínas , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Epitelial de Ovario , Receptores ErbB/análisis , Receptores ErbB/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Medicina de Precisión , Análisis por Matrices de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/análisis , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/análisis , Proteínas Tirosina Quinasas/metabolismo , Receptor ErbB-2/análisis , Receptor ErbB-2/metabolismo , Quinasa Syk , Adulto Joven
6.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843329

RESUMEN

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Neoplasias Pancreáticas , Fosfoproteínas , Proteoma , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células HEK293
7.
NPJ Precis Oncol ; 7(1): 18, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797347

RESUMEN

Endocrine therapy (ET) in combination with CDK4/6 inhibition is routinely used as first-line treatment for HR+/HER2- metastatic breast cancer (MBC) patients. However, 30-40% of patients quickly develop disease progression. In this open-label multicenter clinical trial, we utilized a hypothesis-driven protein/phosphoprotein-based approach to identify predictive markers of response to ET plus CDK4/6 inhibition in pre-treatment tissue biopsies. Pathway-centered signaling profiles were generated from microdissected tumor epithelia and surrounding stroma/immune cells using the reverse phase protein microarray. Phosphorylation levels of the CDK4/6 downstream substrates Rb (S780) and FoxM1 (T600) were higher in patients with progressive disease (PD) compared to responders (p = 0.02). Systemic PI3K/AKT/mTOR activation in tumor epithelia and stroma/immune cells was detected in patients with PD. This activation was not explained by underpinning genomic alterations alone. As the number of FDA-approved targeted compounds increases, functional protein-based signaling analyses may become a critical component of response prediction and treatment selection for MBC patients.

8.
Cancer Res ; 83(1): 141-157, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36346366

RESUMEN

Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
9.
Sci Signal ; 16(816): eadg5289, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113333

RESUMEN

Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.


Asunto(s)
Neoplasias Gástricas , Animales , Humanos , Ratones , Actinas , Guanosina Trifosfato , Quinasas p21 Activadas , Proteínas Proto-Oncogénicas p21(ras) , Receptor IGF Tipo 1 , Proteína de Unión al GTP rhoA/genética , Transducción de Señal , Neoplasias Gástricas/genética
10.
Cell Rep Methods ; 2(8): 100271, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046628

RESUMEN

Clonal evolution and lineage plasticity are key contributors to tumor heterogeneity and response to treatment in cancer. However, capturing signal transduction events in coexisting clones remains challenging from a technical perspective. In this study, we developed and tested a signal-transduction-based workflow to isolate and profile coexisting clones within a complex cellular system like non-small cell lung cancers (NSCLCs). Cooccurring clones were isolated under immunohistochemical guidance using laser-capture microdissection, and cell signaling activation portraits were measured using the reverse-phase protein microarray. To increase the translational potential of this work and capture druggable vulnerabilities within different clones, we measured expression/activation of a panel of key drug targets and downstream substrates of FDA-approved or investigational agents. We isolated intermixed clones, including poorly represented ones (<5% of cells), within the tumor microecology and identified molecular characteristics uniquely attributable to cancer cells that undergo lineage plasticity and neuroendocrine transdifferentiation in NSCLCs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Captura por Microdisección con Láser , Transducción de Señal , Neoplasias Pulmonares/genética , Rayos Láser
11.
Elife ; 112022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069770

RESUMEN

Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Genes ras , Ratones , Mutación , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
12.
Mol Oncol ; 16(1): 104-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437759

RESUMEN

This prospective phase II clinical trial (Side Out 2) explored the clinical benefits of treatment selection informed by multi-omic molecular profiling (MoMP) in refractory metastatic breast cancers (MBCs). Core needle biopsies were collected from 32 patients with MBC at trial enrollment. Patients had received an average of 3.94 previous lines of treatment in the metastatic setting before enrollment in this study. Samples underwent MoMP, including exome sequencing, RNA sequencing (RNA-Seq), immunohistochemistry, and quantitative protein pathway activation mapping by Reverse Phase Protein Microarray (RPPA). Clinical benefit was assessed using the previously published growth modulation index (GMI) under the hypothesis that MoMP-selected therapy would warrant further investigation for GMI ≥ 1.3 in ≥ 35% of the patients. Of the 32 patients enrolled, 29 received treatment based on their MoMP and 25 met the follow-up criteria established by the trial protocol. Molecular information was delivered to the tumor board in a median time frame of 14 days (11-22 days), and targetable alterations for commercially available agents were found in 23/25 patients (92%). Of the 25 patients, 14 (56%) reached GMI ≥ 1.3. A high level of DNA topoisomerase I (TOPO1) led to the selection of irinotecan-based treatments in 48% (12/25) of the patients. A pooled analysis suggested clinical benefit in patients with high TOPO1 expression receiving irinotecan-based regimens (GMI ≥ 1.3 in 66.7% of cases). These results confirmed previous observations that MoMP increases the frequency of identifiable actionable alterations (92% of patients). The MoMP proposed allows the identification of biomarkers that are frequently expressed in MBCs and the evaluation of their role as predictors of response to commercially available agents. Lastly, this study confirmed the role of MoMP for informing treatment selection in refractory MBC patients: more than half of the enrolled patients reached a GMI ≥ 1.3 even after multiple lines of previous therapies for metastatic disease.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunohistoquímica , Irinotecán , Estudios Prospectivos , Resultado del Tratamiento
13.
J Exp Clin Cancer Res ; 40(1): 198, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34154611

RESUMEN

BACKGROUND: Colorectal cancer (CRC) represents the fourth leading cause of cancer-related deaths. The heterogeneity of CRC identity limits the usage of cell lines to study this type of tumor because of the limited representation of multiple features of the original malignancy. Patient-derived colon organoids (PDCOs) are a promising 3D-cell model to study tumor identity for personalized medicine, although this approach still lacks detailed characterization regarding molecular stability during culturing conditions. Correlation analysis that considers genomic, transcriptomic, and proteomic data, as well as thawing, timing, and culturing conditions, is missing. METHODS: Through integrated multi-omics strategies, we characterized PDCOs under different growing and timing conditions, to define their ability to recapitulate the original tumor. RESULTS: Whole Exome Sequencing allowed detecting temporal acquisition of somatic variants, in a patient-specific manner, having deleterious effects on driver genes CRC-associated. Moreover, the targeted NGS approach confirmed that organoids faithfully recapitulated patients' tumor tissue. Using RNA-seq experiments, we identified 5125 differentially expressed transcripts in tumor versus normal organoids at different time points, in which the PTEN pathway resulted of particular interest, as also confirmed by further phospho-proteomics analysis. Interestingly, we identified the PTEN c.806_817dup (NM_000314) mutation, which has never been reported previously and is predicted to be deleterious according to the American College of Medical Genetics and Genomics (ACMG) classification. CONCLUSION: The crosstalk of genomic, transcriptomic and phosphoproteomic data allowed to observe that PDCOs recapitulate, at the molecular level, the tumor of origin, accumulating mutations over time that potentially mimic the evolution of the patient's tumor, underlining relevant potentialities of this 3D model.


Asunto(s)
Neoplasias Colorrectales/enzimología , Organoides/enzimología , Fosfohidrolasa PTEN/metabolismo , Neoplasias Colorrectales/genética , Progresión de la Enfermedad , Humanos , Proteómica/métodos , Secuenciación del Exoma/métodos
14.
Genes (Basel) ; 12(9)2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34573384

RESUMEN

KRAS mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such inhibitors, unfortunately, come with limited clinical efficacy, and therefore the demand for developing novel therapeutic strategies remains an urgent need for these patients. Exploring the influence of wild-type (WT) KRAS on druggable targets can uncover new vulnerabilities for the treatment of KRAS mutant lung adenocarcinomas. Using commercially available KRAS mutant lung adenocarcinoma cell lines, we explored the influence of WT KRAS on signaling networks and druggable targets. Expression and/or activation of 183 signaling proteins, most of which are targets of FDA-approved drugs, were captured by reverse-phase protein microarray (RPPA). Selected findings were validated on a cohort of 23 surgical biospecimens using the RPPA. Kinase-driven signatures associated with the presence of the KRAS WT allele were detected along the MAPK and AKT/mTOR signaling pathway and alterations of cell cycle regulators. FoxM1 emerged as a potential vulnerability of tumors retaining the KRAS WT allele both in cell lines and in the clinical samples. Our findings suggest that loss of WT KRAS impacts on signaling events and druggable targets in KRAS mutant lung adenocarcinomas.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Células A549 , Alelos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores Farmacológicos/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Mutación , Proteína Oncogénica v-akt/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo , Pruebas de Farmacogenómica , Inhibidores de Proteínas Quinasas/farmacología , Estudios Retrospectivos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
Cell Rep ; 37(9): 110060, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852220

RESUMEN

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Daño del ADN , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34620701

RESUMEN

BACKGROUND: Anti-programmed cell death protein 1 and programmed cell death ligand 1 (PD-L1) agents are broadly used in first-line and second-line treatment across different tumor types. While immunohistochemistry-based assays are routinely used to assess PD-L1 expression, their clinical utility remains controversial due to the partial predictive value and lack of standardized cut-offs across antibody clones. Using a high throughput immunoassay, the reverse phase protein microarray (RPPA), coupled with a fluorescence-based detection system, this study compared the performance of six anti-PD-L1 antibody clones on 666 tumor samples. METHODS: PD-L1 expression was measured using five antibody clones (22C3, 28-8, CAL10, E1L3N and SP142) and the therapeutic antibody atezolizumab on 222 lung, 71 ovarian, 52 prostate and 267 breast cancers, and 54 metastatic lesions. To capture clinically relevant variables, our cohort included frozen and formalin-fixed paraffin-embedded samples, surgical specimens and core needle biopsies. Pure tumor epithelia were isolated using laser capture microdissection from 602 samples. Correlation coefficients were calculated to assess concordance between antibody clones. For two independent cohorts of patients with lung cancer treated with nivolumab, RPPA-based PD-L1 measurements were examined along with response to treatment. RESULTS: Median-center PD-L1 dynamic ranged from 0.01 to 39.37 across antibody clones. Correlation coefficients between the six antibody clones were heterogeneous (range: -0.48 to 0.95) and below 0.50 in 61% of the comparisons. In nivolumab-treated patients, RPPA-based measurement identified a subgroup of tumors, where low PD-L1 expression equated to lack of response. CONCLUSIONS: Continuous RPPA-based measurements capture a broad dynamic range of PD-L1 expression in human specimens and heterogeneous concordance levels between antibody clones. This high throughput immunoassay can potentially identify subgroups of tumors in which low expression of PD-L1 equates to lack of response to treatment.


Asunto(s)
Neoplasias/genética , Medicina de Precisión/métodos , Receptor de Muerte Celular Programada 1/uso terapéutico , Análisis por Matrices de Proteínas/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Cancer Discov ; 10(1): 54-71, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31658955

RESUMEN

Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.See related commentary by Klempner and Hata, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Acetonitrilos/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirrolidinas/uso terapéutico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Apoptosis , Proliferación Celular , Ensayos Clínicos Fase I como Asunto , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Persona de Mediana Edad , Pronóstico , Pirimidinas , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Mol Cancer Res ; 17(9): 1815-1827, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31164413

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.


Asunto(s)
Albúminas/farmacología , Carcinoma Ductal Pancreático/genética , Resistencia a Antineoplásicos , Paclitaxel/farmacología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Regulación hacia Arriba , Anciano , Anciano de 80 o más Años , Albúminas/uso terapéutico , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Cultivo Primario de Células , Células Tumorales Cultivadas , Pez Cebra , Neoplasias Pancreáticas
19.
Methods Mol Biol ; 1606: 149-169, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28502000

RESUMEN

While genes and RNA encode information about cellular status, proteins are considered the engine of the cellular machine, as they are the effective elements that drive all cellular functions including proliferation, migration, differentiation, and apoptosis. Consequently, investigations of the cellular protein network are considered a fundamental tool for understanding cellular functions.Alteration of the cellular homeostasis driven by elaborate intra- and extracellular interactions has become one of the most studied fields in the era of personalized medicine and targeted therapy. Increasing interest has been focused on developing and improving proteomic technologies that are suitable for analysis of clinical samples. In this context, reverse-phase protein microarrays (RPPA) is a sensitive, quantitative, high-throughput immunoassay for protein analyses of tissue samples, cells, and body fluids.RPPA is well suited for broad proteomic profiling and is capable of capturing protein activation as well as biochemical reactions such as phosphorylation, glycosylation, ubiquitination, protein cleavage, and conformational alterations across hundreds of samples using a limited amount of biological material. For these reasons, RPPA represents a valid tool for protein analyses and generates data that help elucidate the functional signaling architecture through protein-protein interaction and protein activation mapping for the identification of critical nodes for individualized or combinatorial targeted therapy.


Asunto(s)
Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Humanos , Medicina de Precisión , Mapas de Interacción de Proteínas , Sensibilidad y Especificidad , Transducción de Señal
20.
Oncotarget ; 8(47): 83343-83353, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137348

RESUMEN

In this work high throughput technology and computational analysis were used to study two stage IV lung adenocarcinoma patients treated with standard chemotherapy with markedly different survival (128 months vs 6 months, respectively) and whose tumor samples exhibit a dissimilar protein activation pattern of the signal transduction. Tumor samples of the two patients were subjected to Reverse Phase Protein Microarray (RPPA) analysis to explore the expression/activation levels of 51 signaling proteins. We selected the most divergent proteins based on the ratio of their RPPA values in the two patients with short (s-OS) and long (l-OS) overall survival (OS) and tested them against a EGFR-IGF1R mathematical model. The model with RPPA data showed that the activation levels of 19 proteins were different in the two patients. The four proteins that most distinguished the two patients were BADS155/136 and c-KITY703/719 having a higher activation level in the patient with short survival and p70S6S371/T389 and b-RAFS445 that had a lower activation level in the s-OS patient. The final model describes the interactions between the MAPK and PI3K-mTOR pathways, including 21 nodes. According to our model mTOR and ERK activation levels were predicted to be lower in the s-OS patient than the l-OS patient, while the AMPK activation level was higher in the s-OS patient. Moreover, KRAS activation was predicted to be higher in the l-OS KRAS-mutated patient. In accordance with their different biological properties, the Moment Independent Robustness Indicator in s-OS and l-OS predicted the interaction of MAPK and mTOR and the crosstalk AKT with p90RSK as candidates to be prognostic factors and drug targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA