Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(1): 77-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049581

RESUMEN

Intestinal intraepithelial lymphocytes (IELs) exhibit prompt innate-like responses to microenvironmental cues and require strict control of effector functions. Here we showed that Aiolos, an Ikaros zinc-finger family member encoded by Ikzf3, acted as a regulator of IEL activation. Ikzf3-/- CD8αα+ IELs had elevated expression of NK receptors, cytotoxic enzymes, cytokines and chemokines. Single-cell RNA sequencing of Ikzf3-/- and Ikzf3+/+ IELs showed an amplified effector machinery in Ikzf3-/- CD8αα+ IELs compared to Ikzf3+/+ counterparts. Ikzf3-/- CD8αα+ IELs had increased responsiveness to interleukin-15, which explained a substantial part, but not all, of the observed phenotypes. Aiolos binding sites were close to those for the transcription factors STAT5 and RUNX, which promote interleukin-15 signaling and cytolytic programs, and Ikzf3 deficiency partially increased chromatin accessibility and histone acetylation in these regions. Ikzf3 deficiency in mice enhanced susceptibility to colitis, underscoring the relevance of Aiolos in regulating the effector function in IELs.


Asunto(s)
Linfocitos Intraepiteliales , Factores de Transcripción , Animales , Ratones , Antígenos CD8/metabolismo , Interleucina-15/metabolismo , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cell ; 184(5): 1214-1231.e16, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636133

RESUMEN

Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.


Asunto(s)
Coinfección , Nematospiroides dubius/fisiología , Transducción de Señal , Infecciones por Strongylida/patología , Virus del Nilo Occidental/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Mucosa Intestinal/parasitología , Mucosa Intestinal/virología , Ratones , Ratones Endogámicos C57BL , Neuronas/parasitología , Neuronas/virología , Receptores de Interleucina-4/metabolismo , Factor de Transcripción STAT6/genética , Índice de Severidad de la Enfermedad , Infecciones por Strongylida/parasitología
3.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607511

RESUMEN

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Asunto(s)
Inmunidad Adaptativa/genética , Diarrea/microbiología , Mucosa Intestinal/microbiología , Infecciones por Rotavirus/microbiología , Animales , Antiinfecciosos/farmacología , Bacterias/genética , Bacterias/metabolismo , Diarrea/prevención & control , Diarrea/virología , Heces/microbiología , Regulación de la Expresión Génica/genética , Humanos , Íleon/microbiología , Íleon/patología , Íleon/virología , Interferones/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Ratones , Microbiota/genética , Rotavirus/patogenicidad , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Interleucina-22
4.
Cell ; 160(3): 447-60, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25619688

RESUMEN

Decreases in the diversity of enteric bacterial populations are observed in patients with Crohn's disease (CD) and ulcerative colitis (UC). Less is known about the virome in these diseases. We show that the enteric virome is abnormal in CD and UC patients. In-depth analysis of preparations enriched for free virions in the intestine revealed that CD and UC were associated with a significant expansion of Caudovirales bacteriophages. The viromes of CD and UC patients were disease and cohort specific. Importantly, it did not appear that expansion and diversification of the enteric virome was secondary to changes in bacterial populations. These data support a model in which changes in the virome may contribute to intestinal inflammation and bacterial dysbiosis. We conclude that the virome is a candidate for contributing to, or being a biomarker for, human inflammatory bowel disease and speculate that the enteric virome may play a role in other diseases.


Asunto(s)
Caudovirales/aislamiento & purificación , Colitis Ulcerosa/virología , Enfermedad de Crohn/virología , Disbiosis/virología , Microviridae/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , Caudovirales/genética , Estudios de Cohortes , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colitis Ulcerosa/terapia , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Enfermedad de Crohn/terapia , Disbiosis/microbiología , Disbiosis/patología , Disbiosis/terapia , Heces/microbiología , Heces/virología , Humanos , Metagenoma , Microviridae/genética
5.
PLoS Pathog ; 20(5): e1011961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701091

RESUMEN

Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical relevance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs), modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo model for the study of host regulation of NoV. A persistent strain of MNoV, CR6, establishes a reservoir in intestinal tuft cells for chronic viral shedding in stool. However, the influence of host innate immunity and permissive cell numbers on viral population dynamics is an open question. We generated a pool of 20 different barcoded viruses (CR6BC) by inserting 6-nucleotide barcodes at the 3' position of the NS4 gene and used this pool as our viral inoculum for in vivo infections of different mouse lines. We found that over the course of persistent CR6 infection, shed virus was predominantly colon-derived, and viral barcode richness decreased over time irrespective of host immune status, suggesting that persistent infection involves a series of reinfection events. In mice lacking the IFN-λ receptor, intestinal barcode richness was enhanced, correlating with increased viral intestinal replication. IL-4 treatment, which increases tuft cell numbers, also increased barcode richness, indicating the abundance of permissive tuft cells to be a bottleneck during CR6 infection. In mice lacking type I IFN signaling (Ifnar1-/-) or all IFN signaling (Stat1-/-), barcode diversity at extraintestinal sites was dramatically increased, implicating different IFNs as critical bottlenecks at specific tissue sites. Of interest, extraintestinal barcodes were overlapping but distinct from intestinal barcodes, indicating that disseminated virus represents a distinct viral population than that replicating in the intestine. Barcoded viruses are a valuable tool to explore the influence of host factors on viral diversity in the context of establishment and maintenance of infection as well as dissemination and have provided important insights into how NoV infection proceeds in immunocompetent and immunocompromised hosts.


Asunto(s)
Infecciones por Caliciviridae , Interferones , Norovirus , Animales , Norovirus/fisiología , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/inmunología , Ratones , Interferones/metabolismo , Infección Persistente/virología , Infección Persistente/inmunología , Ratones Endogámicos C57BL , Mucosa Intestinal/virología , Mucosa Intestinal/inmunología , Gastroenteritis/virología , Replicación Viral , Ratones Noqueados , Inmunidad Innata , Esparcimiento de Virus
6.
Nat Immunol ; 20(12): 1563-1564, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636465
7.
Trends Immunol ; 42(11): 1009-1023, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34629295

RESUMEN

Interferons (IFNs) are among the first vertebrate immune pathways activated upon viral infection and are crucial for control of viral replication and dissemination, especially at mucosal surfaces as key locations for host exposure to pathogens. Inhibition of viral establishment and spread at and from these mucosal sites is paramount for preventing severe disease, while concomitantly limiting putative detrimental effects of inflammation. Here, we compare the roles of type I, II, and III IFNs in regulating three archetypal viruses - norovirus, herpes simplex virus, and severe acute respiratory virus coronavirus 2 (SARS-CoV-2) - which infect distinct mammalian mucosal tissues. Emerging paradigms include highly specific roles for IFNs in limiting local versus systemic infection, synergistic activities, and a spectrum of protective versus detrimental effects of IFNs during the infection response.


Asunto(s)
COVID-19 , Virosis , Animales , Humanos , Inmunidad Innata , Interferones , Membrana Mucosa , SARS-CoV-2 , Replicación Viral
8.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34462359

RESUMEN

Oral infection with Toxoplasma gondii results in dysbiosis and enteritis, both of which revert to normal during chronic infection. However, whether infection leaves a lasting impact on mucosal responses remains uncertain. Here we examined the effect of the chemical irritant dextran sodium sulfate (DSS) on intestinal damage and wound healing in chronically infected mice. Our findings indicate that prior infection with T. gondii exacerbates damage to the colon caused by DSS and impairs wound healing by suppressing stem cell regeneration of the epithelium. Enhanced tissue damage was attributable to inflammatory monocytes that emerge preactivated from bone marrow, migrate to the intestine, and release inflammatory mediators, including nitric oxide. Tissue damage was reversed by neutralization of inflammatory monocytes or nitric oxide, revealing a causal mechanism for tissue damage. Our findings suggest that chronic infection with T. gondii enhances monocyte activation to increase inflammation associated with a secondary environmental insult.


Asunto(s)
Colitis/complicaciones , Toxoplasmosis/complicaciones , Animales , Enfermedad Crónica , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Monocitos/patología , Regeneración , Células Madre/patología
9.
J Virol ; 96(17): e0070722, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35972292

RESUMEN

Noroviruses are a leading cause of gastroenteritis worldwide, yet the molecular mechanisms of how host antiviral factors restrict norovirus infection are poorly understood. Here, we present a CRISPR activation screen that identifies mouse genes which inhibit murine norovirus (MNV) replication. Detailed analysis of the major hit Trim7 demonstrates a potent inhibition of the early stages of MNV replication. Leveraging in vitro evolution, we identified MNV mutants that escape Trim7 restriction by altering the cleavage of the viral NS6-7 polyprotein precursor. NS6, but not the NS6-7 precursor, directly binds the substrate-binding domain of Trim7. Surprisingly, the selective polyprotein processing that enables Trim7 evasion inflicts a significant evolutionary burden, as viruses with decreased NS6-7 cleavage are strongly attenuated in viral replication and pathogenesis. Our data provide an unappreciated mechanism of viral evasion of cellular antiviral factors through selective polyprotein processing and highlight the evolutionary tradeoffs in acquiring resistance to host restriction factors. IMPORTANCE To maximize a limited genetic capacity, viruses encode polyproteins that can be subsequently separated into individual components by viral proteases. While classically viewed as a means of economy, recent findings have indicated that polyprotein processing can spatially and temporally coordinate the distinct phases of the viral life cycle. Here, we present a function for alternative polyprotein processing centered on immune defense. We discovered that selective polyprotein processing of the murine norovirus polyprotein shields MNV from restriction by the host antiviral protein Trim7. Trim7 can bind the viral protein NS6 but not the viral precursor protein NS6-7. Our findings provide insight into the evolutionary pressures that define patterns of viral polyprotein processing and uncover a trade-off between viral replication and immune evasion.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Poliproteínas , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas no Estructurales Virales , Animales , Evasión Inmune , Ratones , Norovirus/genética , Norovirus/fisiología , Poliproteínas/genética , Poliproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
10.
PLoS Pathog ; 17(3): e1009402, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705489

RESUMEN

Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.


Asunto(s)
Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Norovirus/genética , Norovirus/patogenicidad , Virulencia/genética , Animales , Infecciones por Caliciviridae/genética , Infecciones por Caliciviridae/inmunología , Aptitud Genética/genética , Inmunidad Innata/inmunología , Ratones , Norovirus/inmunología , Polimorfismo de Nucleótido Simple , Virulencia/inmunología , Replicación Viral
11.
Nature ; 607(7918): 247-248, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768603
12.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177207

RESUMEN

Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.


Asunto(s)
Células Epiteliales/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata/inmunología , Intestinos/inmunología , Norovirus/fisiología , Receptores Inmunológicos/fisiología , Tropismo Viral , Animales , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/virología , Células Epiteliales/virología , Femenino , Intestinos/virología , Masculino , Ratones , Ratones Noqueados
13.
PLoS Pathog ; 16(4): e1008242, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251490

RESUMEN

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.


Asunto(s)
Infecciones por Caliciviridae/virología , Especificidad del Huésped , Interacciones Huésped-Patógeno , Norovirus/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Animales , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Norovirus/crecimiento & desarrollo , Receptores Inmunológicos/fisiología , Tropismo Viral
14.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581099

RESUMEN

Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.


Asunto(s)
Infecciones por Caliciviridae/virología , Resistencia a la Enfermedad/genética , Polimorfismo Genético , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Animales , Sitios de Unión , Gastroenteritis/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Modelos Moleculares , Norovirus , Conformación Proteica , Receptores Inmunológicos/química , Análisis de Secuencia de Proteína , Internalización del Virus
15.
Nature ; 521(7550): 90-93, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25686606

RESUMEN

The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control. In many cases, the microbiota is the presumed cause of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice. In conventionally raised mice, the microbiome is transmitted from the dam. Here we show that microbially driven dichotomous faecal immunoglobulin-A (IgA) levels in wild-type mice within the same facility mimic the effects of chromosomal mutations. We observe in multiple facilities that vertically transmissible bacteria in IgA-low mice dominantly lower faecal IgA levels in IgA-high mice after co-housing or faecal transplantation. In response to injury, IgA-low mice show increased damage that is transferable by faecal transplantation and driven by faecal IgA differences. We find that bacteria from IgA-low mice degrade the secretory component of secretory IgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose faecal IgA as one marker of microbial variability and conclude that co-housing and/or faecal transplantation enables analysis of progeny from different dams.


Asunto(s)
Heces/microbiología , Inmunoglobulina A/análisis , Inmunoglobulina A/inmunología , Fenotipo , Ampicilina/farmacología , Anaerobiosis , Animales , Biomarcadores/análisis , Cromosomas de los Mamíferos/genética , Femenino , Inmunoglobulina A/metabolismo , Inmunoglobulina A Secretora/metabolismo , Masculino , Ratones , Microbiota/efectos de los fármacos , Microbiota/inmunología , Mutación , Reproducibilidad de los Resultados , Componente Secretorio/inmunología , Componente Secretorio/metabolismo
16.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315996

RESUMEN

Autosomal dominant STAT1 mutations in humans have been associated with chronic mucocutaneous candidiasis (CMC), as well as with increased susceptibility to herpesvirus infections. Prior studies have focused on mucosal and Th17-mediated immunity against Candida, but mechanisms of impaired antiviral immunity have not previously been examined. To begin to explore the mechanisms of STAT1-associated immunodeficiency against herpesviruses, we generated heterozygous STAT1 R274W knock-in mice that have a frequently reported STAT1 mutation associated in humans with susceptibility to herpesvirus infections. In primary macrophages and fibroblasts, we found that STAT1 R274W had no appreciable effect on cell-intrinsic immunity against herpes simplex virus 1 (HSV-1) or gammaherpesvirus 68 (γHV68) infection. However, intraperitoneal inoculation of mice with γHV68 was associated with impaired control of infection at day 14 in STAT1 R274W mice compared with that in wild-type (WT) littermate control animals. Infection of STAT1 R274W mice was associated with paradoxically decreased expression of IFN-stimulated genes (ISGs) and gamma interferon (IFN-γ), likely secondary to defective CD4+ and CD8+ T cell responses, including diminished numbers of antigen-specific CD8+ T cells. Viral pathogenesis studies in WT and STAT1 R274W mixed bone marrow chimeric mice revealed that the presence of WT leukocytes was sufficient to limit infection and that antigen-specific STAT1 R274W CD8+ T cell responses were impaired even in the presence of WT leukocytes. Thus, in addition to regulating Th17 responses against Candida, a STAT1 gain-of-function mutant impedes antigen-specific T cell responses against a common gammaherpesvirus in mice.IMPORTANCE Mechanisms of immunodeficiency related to STAT1 gain of function have not been previously studied in an animal model of viral pathogenesis. Using virological and immunological techniques, we examined the immune response to γHV68 in heterozygous mice that have an autosomal dominant mutation in the STAT1 coiled-coil domain (STAT1 R274W). We observed impaired control of infection, which was associated with diminished production of gamma interferon (IFN-γ), fewer effector CD4+ and CD8+ T cells, and a reduction in the number of antigen-specific CD8+ T cells. These findings indicate that a STAT1 gain-of-function mutation limits production of antiviral T cells, likely contributing to immunodeficiency against herpesviruses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Mutación con Ganancia de Función , Infecciones por Herpesviridae/inmunología , Mutación Missense , Rhadinovirus/inmunología , Factor de Transcripción STAT1/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/inmunología , Fibroblastos/virología , Técnicas de Sustitución del Gen , Interferón gamma/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Ratones , Factor de Transcripción STAT1/genética
17.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462571

RESUMEN

Type III interferon (IFN), or IFN lambda (IFN-λ), is an essential component of the innate immune response to mucosal viral infections. In both the intestine and the lung, signaling via the IFN-λ receptor (IFNLR) controls clinically important viral pathogens, including influenza virus, norovirus, and rotavirus. While it is thought that IFN-λ cytokines are the exclusive ligands for signaling through IFNLR, it is not known whether genetic ablation of these cytokines phenotypically recapitulates disruption of the receptor. Here, we report the serendipitous establishment of Ifnl2-/- Ifnl3-/- mice, which lack all known functional murine IFN-λ cytokines. We demonstrate that, like Ifnlr1-/- mice lacking IFNLR signaling, these mice display defective control of murine norovirus, reovirus, and influenza virus and therefore genocopy Ifnlr1-/- mice. Thus, for regulation of viral infections at mucosal sites of both the intestine and lung, signaling via IFNLR can be fully explained by the activity of known cytokines IFN-λ2 and IFN-λ3. Our results confirm the current understanding of ligand-receptor interactions for type III IFN signaling and highlight the importance of this pathway in regulation of mucosal viral pathogens.IMPORTANCE Type III interferons are potent antiviral cytokines important for regulation of viruses that infect at mucosal surfaces. Studies using mice lacking the Ifnlr1 gene encoding the type III interferon receptor have demonstrated that signaling through this receptor is critical for protection against influenza virus, norovirus, and reovirus. Using a genetic approach to disrupt murine type III interferon cytokine genes Ifnl2 and Ifnl3, we found that mice lacking these cytokines fully recapitulate the impaired control of viruses observed in mice lacking Ifnlr1 Our results support the idea of an exclusive role for known type III interferon cytokines in signaling via IFNLR to mediate antiviral effects at mucosal surfaces. These findings emphasize the importance of type III interferons in regulation of a variety of viral pathogens and provide important genetic evidence to support our understanding of the ligand-receptor interactions in this pathway.


Asunto(s)
Citocinas/genética , Interferones/genética , Interleucinas/genética , Animales , Línea Celular , Citocinas/metabolismo , Femenino , Inmunidad Innata , Interferones/metabolismo , Interleucinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membrana Mucosa/metabolismo , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Virosis/metabolismo , Interferón lambda
18.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30463976

RESUMEN

We previously generated STING N153S knock-in mice that have a human disease-associated gain-of-function mutation in STING. Patients with this mutation (STING N154S in humans) develop STING-associated vasculopathy with onset in infancy (SAVI), a severe pediatric autoinflammatory disease characterized by pulmonary fibrosis. Since this mutation promotes the upregulation of antiviral type I interferon-stimulated genes (ISGs), we hypothesized that STING N153S knock-in mice may develop more severe autoinflammatory disease in response to a virus challenge. To test this hypothesis, we infected heterozygous STING N153S mice with murine gammaherpesvirus 68 (γHV68). STING N153S mice were highly vulnerable to infection and developed pulmonary fibrosis after infection. In addition to impairing CD8+ T cell responses and humoral immunity, STING N153S also promoted the replication of γHV68 in cultured macrophages. In further support of a combined innate and adaptive immunodeficiency, γHV68 infection was more severe in Rag1-/- STING N153S mice than in Rag1-/- littermate mice, which completely lack adaptive immunity. Thus, a gain-of-function STING mutation creates a combined innate and adaptive immunodeficiency that leads to virus-induced pulmonary fibrosis.IMPORTANCE A variety of human rheumatologic disease-causing mutations have recently been identified. Some of these mutations are found in viral nucleic acid-sensing proteins, but whether viruses can influence the onset or progression of these human diseases is less well understood. One such autoinflammatory disease, called STING-associated vasculopathy with onset in infancy (SAVI), affects children and leads to severe lung disease. We generated mice with a SAVI-associated STING mutation and infected them with γHV68, a common DNA virus that is related to human Epstein-Barr virus. Mice with the human disease-causing STING mutation were more vulnerable to infection than wild-type littermate control animals. Furthermore, the STING mutant mice developed lung fibrosis similar to that of patients with SAVI. These findings reveal that a human STING mutation creates severe immunodeficiency, leading to virus-induced lung disease in mice.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Fibrosis Pulmonar/genética , Inmunidad Adaptativa/genética , Animales , Mutación con Ganancia de Función/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/fisiología , Síndromes de Inmunodeficiencia , Inflamación/genética , Pulmón/virología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Fibrosis Pulmonar/metabolismo , Transducción de Señal , Linfocitos T/metabolismo
19.
Blood ; 132(6): 559-564, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29853538

RESUMEN

Recent studies have revealed that the intestinal bacterial microbiome plays an important role in the regulation of hematopoiesis. A correlation between adverse hematologic effects and imbalance of the intestinal microbiome, or dysbiosis, is evident in several human conditions, such as inflammatory bowel disease, obesity, and, critically, in the setting of antibiotic exposure. Here we review the effects of gut dysbiosis on the hematological compartment and our current understanding of the mechanisms through which changes in the bacterial microbiome affect hematopoiesis.


Asunto(s)
Disbiosis/complicaciones , Microbioma Gastrointestinal , Hematopoyesis , Animales , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Médula Ósea/fisiología , Disbiosis/microbiología , Disbiosis/fisiopatología , Microbioma Gastrointestinal/efectos de los fármacos , Supervivencia de Injerto , Hematopoyesis/genética , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/microbiología , Ratones , Modelos Inmunológicos , Factor 88 de Diferenciación Mieloide/fisiología , Neutropenia/inducido químicamente , Proteína Adaptadora de Señalización NOD1/fisiología , Trastornos Nutricionales/complicaciones , Trastornos Nutricionales/microbiología , Transducción de Señal , Organismos Libres de Patógenos Específicos , Receptores Toll-Like/fisiología
20.
J Biol Chem ; 293(16): 6022-6038, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29496999

RESUMEN

Germline-encoded receptors recognizing common pathogen-associated molecular patterns are a central element of the innate immune system and play an important role in shaping the host response to infection. Many of the innate immune molecules central to these signaling pathways are evolutionarily conserved. LysMD3 is a novel molecule containing a putative peptidoglycan-binding domain that has orthologs in humans, mice, zebrafish, flies, and worms. We found that the lysin motif (LysM) of LysMD3 is likely related to a previously described peptidoglycan-binding LysM found in bacteria. Mouse LysMD3 is a type II integral membrane protein that co-localizes with GM130+ structures, consistent with localization to the Golgi apparatus. We describe here two lines of mLysMD3-deficient mice for in vivo characterization of mLysMD3 function. We found that mLysMD3-deficient mice were born at Mendelian ratios and had no obvious pathological abnormalities. They also exhibited no obvious immune response deficiencies in a number of models of infection and inflammation. mLysMD3-deficient mice exhibited no signs of intestinal dysbiosis by 16S analysis or alterations in intestinal gene expression by RNA sequencing. We conclude that mLysMD3 contains a LysM with cytoplasmic orientation, but we were unable to define a physiological role for the molecule in vivo.


Asunto(s)
Eliminación de Gen , Animales , Autoantígenos/análisis , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Sistemas CRISPR-Cas , Femenino , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Masculino , Proteínas de la Membrana/análisis , Ratones , Micosis/genética , Micosis/inmunología , Filogenia , Virosis/genética , Virosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA