Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 127(12): 2765-2778, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36926906

RESUMEN

Excited-state intramolecular hydrogen transfer on the triplet surface of salicylideneaniline derivatives has received much less attention than the corresponding ultrafast process on the singlet surface. To enhance the understanding of this triplet reactivity, the photochemical properties of a series of salicylidene-α-hydroxy acid salts with different substituents on the phenol moiety (1-3) were characterized. UV/vis absorption and phosphorescence measurements in ethanol revealed that 1-3 exist as both enol and keto tautomers, with the enol form being predominant. Irradiation of 1 at 310 nm in ethanol glass (77 K) yielded an absorption band with a λmax at ∼405 nm, which was assigned to the trans-keto tautomer (trans-1K). In contrast, laser flash photolysis of 1-3 in methanol or acetonitrile resulted in a transient absorption with λmax at 440-460 nm. This transient, which decayed on the microsecond timescale and was significantly shorter lived in methanol than in acetonitrile, was assigned to the triplet excited state (T1) of the cis-keto tautomer (cis-1K-3K) and residual absorption of trans-1K-3K by comparison with TD-DFT calculations. The assignment of the T1 of cis-1K was further supported by quenching studies with anthracene and 2,5-dimethyl-2,4-hexadiene. Laser flash photolysis of 1 in the temperature range of 173-293 K gave an activation barrier of 6.7 kcal/mol for the decay of the T1 of cis-1K. In contrast, the calculated activation barrier for cis-1K to undergo a 1,5-H atom shift to reform 1 was smaller, indicating that intersystem crossing of the T1 of cis-1K is the rate-determining step in the regeneration of 1.

2.
Inorg Chem ; 56(21): 13029-13034, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-28991446

RESUMEN

The tripodal amine chelate with two pyridyl groups and an α-hydroxy acid (AHA) group, Pyr-TPA-AHA, was synthesized. Different Fe(III) complexes form with this chelate depending upon the counterion of the Fe(III) source used in the synthesis. A dinuclear complex, Fe(III)2(Pyr-TPA-AHA)2(µ-O), 1, and mononuclear complexes Fe(III)(Pyr-TPA-AHA)X (X = Cl- or Br-, 2 and 3, respectively) were synthesized. 2 can be easily converted to 1 by addition of silver nitrate or a large excess of water. The structure of 1 was solved by X-ray crystallography (C32H34N6O7Fe2·13H2O, a = 14.1236(6) Å, b = 14.1236(6) Å, c = 21.7469(15) Å, α = ß = γ = 90°, tetragonal, P42212, Z = 4). 2 and 3 each have simple quasireversible cyclic voltammograms with E1/2 (vs aqueous Ag/AgCl) = +135 mV for 2 and +470 for 3 in acetonitrile. The cyclic voltammogram for 1 in acetonitrile has a quasireversible feature at E1/2 = -285 mV and an irreversible cathodic feature at -1140 mV. All three complexes are photochemically active upon irradiation with UV light, resulting in cleavage of the AHA group and reduction of the iron to Fe(II). Photolysis of 1 results in reduction of both Fe(III) ions in the dinuclear complex for each AHA group that is cleaved, while photolysis of 2 and 3 results in reduction of a single Fe(III) for each AHA cleavage. The quantum yields for 2 and 3 are significantly higher than that of 1.

3.
Inorg Chem ; 53(11): 5781-7, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24881486

RESUMEN

The trimeric clusters [Fe(III)3(X-Sal-AHA)3(µ3-OCH3)](-), where X-Sal-AHA is a tetradentate chelate incorporating an α-hydroxy acid moiety (AHA) and a salicylidene moiety (X-Sal with X being 5-NO2, 3,5-diCl, all-H, 3-OCH3, or 3,5-di-t-Bu substituents on the phenolate ring), undergo a photochemical reaction resulting in reduction of two Fe(III) to Fe(II) for each AHA group that is oxidatively cleaved. However, photolysis of structurally analogous mixed Fe/Ga clusters demonstrate that a similar photolysis reaction will occur with only a single Fe(III) in the cluster. Quantum yields of iron reduction for the series of [Fe(III)3(X-Sal-AHA)3(µ3-OCH3)](-) complexes measured by monitoring Fe(II) production are twice those for ligand oxidation, measured by loss of the CD signal for the complex due to cleavage of the chiral AHA group.The quantum yields, 2-13% in the UVA and UVB ranges, are higher for complexes with electron-withdrawing X groups than for those with electron-donating X groups [corrected]. The observed final photolysis product of the chelate is different if irradiation is done in the air than if it is done under Ar. The first observed photochemical product is the aldehyde resulting from decarboxylation of the AHA. This is the final product under anaerobic conditions. In air, this is followed by an Fe- and O2-dependent reaction oxidizing the aldehyde to the corresponding carboxylate, then a second Fe- and light-dependent decarboxylation reaction giving a product that is two carbons smaller than the initial ligand. These reactivity studies have important biological implications for the photoactive marine siderophores. They suggest that different types of photochemical products for different siderophore structure types do not result from different initial photochemical steps, but rather from different susceptibility of the initial photochemical product to air oxidation.


Asunto(s)
Hidroxiácidos/química , Compuestos de Hierro/química , Fotólisis , Sideróforos/química , Estructura Molecular
4.
Inorg Chem ; 49(10): 4433-9, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20397713

RESUMEN

A series of five new alpha-hydroxy acid-containing chelates inspired by photoactive marine siderophores, along with their Fe(III) complexes, have been synthesized and characterized. These chelates, designated X-Sal-AHA, each contributes a bidentate salicylidene moiety (X-Sal, X = 5-NO(2), 3,5-diCl, H, 3,5-di-tert-butyl, or 3-OCH(3) on the phenolate ring) and a bidentate alpha-hydroxy acid moiety (AHA). The X-ray crystal structure of Na[Fe(3)(3,5-diCl-Sal-AHA)(3)(mu(3)-OCH(3))] shows an Fe(III) trimer with the triply deprotonated, trianionic ligands each spanning two Fe(III)'s that are bridged by the hydroxyl group of the ligand. Additionally, a mu(3)-methoxy anion caps the Fe(III)(3) face. Electrospray ionization mass spectra demonstrate that this structure is representative of the Fe(III) complexes of all five derivatives in methanol solution, with the exception of the X = 3,5-di-t-Bu derivative having a mu(3)-OH bridge rather than a methoxy bridge. Stability constants determined from reduction potentials range from 10(34) for the 5-NO(2) derivative to >10(40) for the 3,5-di-tBu derivative. All five complexes are photoactive when irradiated by sunlight, with the relative rate of photolysis as monitored by Fe(II) transfer correlating with the Hammett sigma(+) parameter for the phenolate ring substituents.


Asunto(s)
Hidroxiácidos/química , Quelantes del Hierro/química , Hierro/química , Luz , Absorción , Dicroismo Circular , Electrones , Quelantes del Hierro/síntesis química , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Espectrofotometría Ultravioleta
5.
Inorg Chem ; 38(21): 4801-4809, 1999 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-11671209

RESUMEN

It was previously shown that the addition of 1 equiv of a strong acid to [Mn(IV)(salpn)(&mgr;-O)](2), 1, generates the oxo/hydroxo complex [{Mn(IV)(salpn)}(2)(&mgr;-O,&mgr;-OH)](CF(3)SO(3)), 2, which emphasized the basicity of the &mgr;(2)-O(2)(-) units in the [Mn(IV)(&mgr;-O)](2) dimers. We now demonstrate the inherent nucleophilicity of those &mgr;(2)-O(2)(-) units by showing that the addition of methyl triflate to 1 results in formation of the oxo/methoxo-bridged Mn(IV) dimer [{Mn(IV)(salpn)}(2)(&mgr;-O,&mgr;-OCH(3))](CF(3)SO(3)), 3. EXAFS analysis of 3 demonstrates that alkylation of an oxo bridge results in the same structural modification of the [Mn(IV)(&mgr;-O)](2) core as an oxo bridge protonation. Electrochemical and spectroscopic comparisons of 3 to 2 indicate that 3 is a good electronic structure analogue for 2 without the complication of proton lability and hydrogen bonding. Indeed, 2 and 3 react nearly identically with hydrogen peroxide and with strong acids. In contrast, the products of their reactions with amines, acetate, and triphenylphosphine are dramatically different. The proton lability of 2 results in simple proton transfer, circumventing the slower redox reactions of these substrates with 3. Isotopic labeling, kinetic, and EPR-monitored radical trap studies lead to a proposed reduction-oxidation mechanistic scheme for the reactions of 3 with amines and triphenylphosphine. The Mn(III) product of this reaction, [Mn(III)(salpn)(Ph(3)PO)](CF(3)SO(3)), was isolated and crystallographically characterized as a dimerized complex. The redox nature of the reactions is confirmed by trapping of a reduced Mn intermediate which is identified by EPR spectroscopy. Comparison of the reactions of 2 and 3 demonstrates the dramatic effect of proton lability and hydrogen bonding on reactivity, and suggests how metalloenzymes may regulate active site reactivity to produce very different catalytic activities with similar active site structures. Furthermore, it also emphasizes that caution should be used when the reactivity of model compounds with easily and rapidly dissociable protons is assessed.

6.
Inorg Chem ; 45(12): 4685-94, 2006 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-16749832

RESUMEN

Heme a, the metalloporphyrin cofactor unique to cytochrome c oxidases, differs from the more common heme b by two chemical modifications, a C-2 hydroxyethylfarnesyl group and a C-8 formyl group. To elucidate a role of the C-8 formyl group, we compare the heme affinity, spectroscopy, and electrochemistry of a heme a mimic, Fe(diacetyldeuterioporphyrin IX) or Fe(DADPIX), with heme b, Fe(protoporphryrin IX) or Fe(PPIX), incorporated into a designed heme protein. The [Delta7-H3m]2 protein ligand, or maquette, selected for this study contains two equivalent bis-(3-methyl-L-histidine) heme binding sites within a four-alpha-helix bundle scaffold. The spectroscopic data on Fe(PPIX) and Fe(DADPIX) bound to [Delta7-H3m]2 demonstrate that these complexes are excellent synthetic analogues for natural cytochromes b and a, respectively. Comparison of the spectroscopic, electrochemical, and equilibrium thermodynamic data measured for the Fe(PPIX)-[Delta7-H3m]2 maquette with the previously reported Fe(PPIX)-[Delta7-His]2 complex demonstrates that changing the heme axial ligands to 3-methyl-L-histidine from L-histidine does not alter the resulting heme protein properties significantly in either oxidation state. Heme binding studies demonstrate that [Delta7-H3m]2 binds two ferrous Fe(DADPIX) or Fe(PPIX) moieties with similar dissociation constant values. However, in the ferric state, the data show that [Delta7-H3m]2 only binds a single Fe(DADPIX) and that one 2500-fold weaker than oxidized Fe(PPIX). The data demonstrate that the 4.6 kcal mol(-1) weakened affinity of [Delta7-H3m]2 for oxidized Fe(DADPIX) results in the majority of the 160 mV, 3.7 kcal mol(-1), positive shift in the heme reduction potential relative to Fe(PPIX). These data indicate that a role of the formyl group on heme a is to raise the iron reduction potential, thus making it a better electron acceptor, but that it does so by destabilizing the affinity of bis-imidazole sites for the ferric state.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Hemo/análogos & derivados , Dicroismo Circular , Cristalografía por Rayos X , Electroquímica , Electrones , Compuestos Férricos/química , Compuestos Ferrosos/química , Hemo/química , Indicadores y Reactivos , Peso Molecular , Oxidación-Reducción , Péptidos/química , Porfirinas/química , Potenciometría , Desnaturalización Proteica , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta , Espectrometría Raman
7.
Inorg Chem ; 45(8): 3191-202, 2006 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-16602775

RESUMEN

A new polyimidazole tripod N,N-bis((1-methyl-4-pivalamidoimidazol-2-yl)methyl)-N'-((1-methylimidazol-2-yl)methyl)amine (L2) has been synthesized and shown to form intramolecular hydrogen bonds with different axial ligands bonded to Cu(II) in the solid state. The same hydrogen-bonding property of L2 appears responsible for the stabilization of a Cu(II)-OOH species in solution. The crystal structures of L2 and three of its Cu(II) complexes are reported. The [Cu(L2)X]ClO4 complexes, 4-6 (X- = Cl-, OH-, or N3-) have distorted trigonal bipyramidal geometries in the solid state and have been characterized further by UV-vis absorption, electron paramagnetic resonance (EPR) spectroscopy, and cyclic voltammetry. The reaction of [Cu(L2)OH](ClO4) (5) with H2O2 and tert-butyl hydroperoxide in methanol generates [Cu(L2)OOH](ClO4) (7) and [Cu(L2)OO(t)Bu](ClO4) (8) which have been characterized by different spectroscopic methods. The compound [Cu(L2)OO(t)Bu]+ displays a band at 395 nm (epsilon = 950 M(-1) cm(-1)) assigned to an alkylperoxo pi*(sigma) --> Cu ligand-to-metal charge transfer (LMCT) transition, while [Cu(L2)OOH]+ displays a peroxo pi*(sigma) --> Cu charge-transfer transition at 365 nm with epsilon = 1300 M(-1) cm(-1), a mass ion at m/z 593.4, and nu(O-O) stretch (resonance Raman) at 854 cm(-1) that shifts to lower energy by 46 cm(-1) upon 18O substitution.

8.
Inorg Chem ; 44(15): 5222-8, 2005 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16022519

RESUMEN

Two new ligands consisting of bis(oxime) amine units tethered by a bridge have been synthesized. Their nickel chloride and nickel nitrate complexes have also been synthesized and characterized by X-ray crystallography, FTIR, mass spectrometry, and elemental analysis. One of these ligands, L1 (N,N,N',N'-tetra(1-propan-2-onyl oxime)-diamino-m-xylene), is always dinucleating, while the other ligand, L2 (N,N,N',N'-tetra(1-propan-2-onyl-oxime)-1,3-diaminopropane), shows an unusual anion dependence on the nuclearity. When nickel chloride is used, the ligand acts in a dinucleating manner and coordinates two nickels; however, when nickel nitrate is used, the ligand acts in a monodentate fashion and coordinates only one nickel. Once the mononuclear complex is formed, it is not possible to add a second nickel if Ni(NO(3))(2) is used as the nickel source; it is possible, however, to add a second nickel if NiCl(2) is used as the nickel source. The dinuclear complex can be converted to the mononuclear one by either using silver nitrate to exchange the chloride anions for nitrates or by dissolving the complex in water. Ni(2)(L1)Cl(4)(DMF)(2).DMF: orthorhombic, P2(1)2(1)2(1), a = 12.2524(11) A, b = 16.6145(15) A, c = 20.1234(19) A, V = 4096.5(6) A(3), Z = 4. [Ni(2)(L2)Cl(4)(DMF)](2).2DMF: triclinic, P-1, a = 12.5347(5) A, b = 12.5403(5) A, c = 14.3504(6) A, alpha = 67.348(1) degrees , beta = 69.705(1) degrees , gamma = 81.549(1) degrees , V = 1952.25(14) A(3), Z = 1. Ni(L2).(NO(3))(2): monoclinic, P2(1)/n, a = 9.6738(3) A, b = 30.2229(9) A, c = 15.8238(5) A, beta = 97.995(1) degrees , V = 4581.4(2) A(3), Z = 8.


Asunto(s)
Aminas/síntesis química , Níquel/química , Compuestos Organometálicos/síntesis química , Oximas/síntesis química , Xilenos/síntesis química , Aminas/química , Aniones/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Oximas/química , Xilenos/química
9.
Inorg Chem ; 41(9): 2307-9, 2002 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-11978089

RESUMEN

The ligand tris(2-hydroxyiminopropyl)amine (Ox(3)H(3)) binds to nickel(II) in multiple protonation states. In the neutral state, the X-ray crystal structure of the monomeric complex [Ni(Ox(3)H(3))(NO(3))(H(2)O)](NO(3)).(H(2)O), 1, has six-coordinate pseudo-octahedral geometry, with binding of the amine and three oxime nitrogens, a nitrate, and a water. In the mono-deprotonated form, the X-ray crystal structure shows a dimer, [Ni(Ox(3)H(2))(CH(3)CN)](2)(ClO(4))(2), 2, which has bridging oximate groups and a Ni-Ni distance of 3.575 A. The fully deprotonated complex, 3, shows significantly low Ni(II) oxidation potentials at -390 and +165 mV (versus Fc(+)/Fc). Complex 3 shows reactivity when exposed to O(2), consuming multiple O(2) equivalents and turning from the purple 3 to a dark brown complex, 4. Complex 4 has an EPR spectrum consistent with Ni(III), but spin quantitation accounts for only about 10% of the total Ni, consistent with turnover of the Ni oxidation states. This Ni(II)/O(2) system oxidizes triphenylphosphine to its oxide, with incorporation of the isotopic label from O(2).

10.
Inorg Chem ; 43(26): 8218-20, 2004 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-15606161

RESUMEN

The substitution of 1-methyl-l-histidine for the histidine heme ligands in a de novo designed four-alpha-helix bundle scaffold results in conversion of a six-coordinate cytochrome maquette into a self-assembled five-coordinate mono-(1-methyl-histidine)-ligated heme as an initial maquette for the dioxygen carrier protein myoglobin. UV-vis, magnetic circular dichroism, and resonance Raman spectroscopies demonstrate the presence of five-coordinate mono-(1-methyl-histidine) ligated ferrous heme spectroscopically similar to deoxymyoglobin. Thermodynamic analysis of the ferric and ferrous heme dissociation constants indicates greater destabilization of the ferric state than the ferrous state. The ferrous heme protein reacts with carbon monoxide to form a (1-methyl-histidine)-Fe(II)(heme)-CO complex; however, reaction with dioxygen leads to autoxidation and ferric heme dissociation. These results indicate that negative protein design can be used to generate a five-coordinate heme within a maquette scaffold.


Asunto(s)
Hemoproteínas/química , Histidina/química , Mioglobina/análogos & derivados , Mioglobina/química , Monóxido de Carbono/química , Dicroismo Circular , Hierro/química , Metilhistidinas/química , Modelos Moleculares , Espectrofotometría Ultravioleta , Espectrometría Raman , Termodinámica
11.
Inorg Chem ; 42(3): 717-28, 2003 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-12562185

RESUMEN

A library of tripodal amine ligands with two oxime donor arms and a variable coordinating or noncoordinating third arm has been synthesized, including two chiral ligands based on l-phenylalanine. Their Ni(II) complexes have been synthesized and characterized by X-ray crystallography, UV-vis absorption, circular dichroism, and FTIR spectroscopy, mass spectrometry, and room-temperature magnetic susceptibility. At least one crystal structure is reported for all but one Ni/ligand combination. All show a six-coordinate pseudo-octahedral coordination geometry around the nickel center, with the bis(oxime)amine unit coordinating in a facial mode. Three distinct structure types are observed: (1) for tetradentate ligands, six-coordinate monomers are formed, with anions and/or solvent filling out the coordination sphere; (2) for tridentate ligands, six-coordinate monomers are formed with Ni(II)(NO(3))(2), with one monodentate and one bidentate nitrate filling the remaining coordination positions; (3) for tridentate ligands, six-coordinate, bis(mu-Cl) dimers are formed with Ni(II)Cl(2), with one terminal and two bridging chlorides filling the coordination sphere. The UV-vis absorption spectra of the complexes show that the value of 10 Dq varies according to the nature of the third arm of the ligand. The trend based on the third arm follows the order alkyl/aryl < amide < carboxylate < alcohol < pyridyl < oxime.


Asunto(s)
Técnicas Químicas Combinatorias , Níquel/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Fenilalanina , Aminas/síntesis química , Aminas/química , Dicroismo Circular , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Oximas/síntesis química , Oximas/química , Fenilalanina/análogos & derivados , Fenilalanina/síntesis química , Fenilalanina/química , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA