RESUMEN
The Pisum sativum (pea) mutants degenerate leaves (dgl) and bronze (brz) accumulate large amounts of iron in leaves. First described several decades ago, the two mutants have provided important insights into iron homeostasis in plants but the underlying mutations have remained unknown. Using exome sequencing we identified an in-frame deletion associated with dgl in a BRUTUS homolog. The deletion is absent from wild type and the original parent line. BRUTUS belongs to a small family of E3 ubiquitin ligases acting as negative regulators of iron uptake in plants. The brz mutation was previously mapped to chromosome 4, and superimposing this region to the pea genome sequence uncovered a mutation in OPT3, encoding an oligopeptide transporter with a plant-specific role in metal transport. The causal nature of the mutations was confirmed by additional genetic analyses. Identification of the mutated genes rationalizes many of the previously described phenotypes and provides new insights into shoot-to-root signaling of iron deficiency. Furthermore, the non-lethal mutations in these essential genes suggest new strategies for biofortification of crops with iron.
Asunto(s)
Hierro , Pisum sativum , Hierro/metabolismo , Pisum sativum/genética , Metales , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Transporte de Membrana/genéticaRESUMEN
Dietary deficiencies of iron and zinc cause human malnutrition that can be mitigated by biofortified staple crops. Conventional breeding approaches to increase grain mineral concentrations in wheat (Triticum aestivum L.) have had only limited success, and our understanding of the genetic and physiological barriers to altering this trait is incomplete. Here we demonstrate that a transgenic approach combining endosperm-specific expression of the wheat VACUOLAR IRON TRANSPORTER gene TaVIT2-D with constitutive expression of the rice (Oryza sativa) NICOTIANAMINE SYNTHASE gene OsNAS2 significantly increases the total concentration of zinc and relocates iron to white-flour fractions. In two distinct bread wheat cultivars, we show that the so called VIT-NAS construct led to a two-fold increase in zinc in wholemeal flour, to â¼50 µg g-1. Total iron was not significantly increased, but redistribution within the grain resulted in a three-fold increase in iron in highly pure, roller-milled white flour, to â¼25 µg g-1. Interestingly, expression of OsNAS2 partially restored iron translocation to the aleurone, which is iron depleted in grain overexpressing TaVIT2 alone. A greater than three-fold increase in the level of the natural plant metal chelator nicotianamine in the grain of VIT-NAS lines corresponded with improved iron and zinc bioaccessibility in white flour. The growth of VIT-NAS plants in the greenhouse was indistinguishable from untransformed controls. Our results provide insights into mineral translocation and distribution in wheat grain and demonstrate that the individual and combined effects of the two transgenes can enhance the nutritional quality of wheat beyond what is possible by conventional breeding.
Asunto(s)
Harina , Zinc , Humanos , Zinc/metabolismo , Harina/análisis , Triticum/genética , Triticum/metabolismo , Fitomejoramiento , Minerales , Grano Comestible/genética , Grano Comestible/metabolismoRESUMEN
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Lipoilación/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , MutaciónRESUMEN
The mineral micronutrients zinc (Zn) and iron (Fe) are essential for plant growth and human nutrition, but interactions between the homeostatic networks of these two elements are not fully understood. Here we show that loss of function of BTSL1 and BTSL2, which encode partially redundant E3 ubiquitin ligases that negatively regulate Fe uptake, confers tolerance to Zn excess in Arabidopsis thaliana. Double btsl1 btsl2 mutant seedlings grown on high Zn medium accumulated similar amounts of Zn in roots and shoots to the wild type, but suppressed the accumulation of excess Fe in roots. RNA-sequencing analysis showed that roots of mutant seedlings had relatively higher expression of genes involved in Fe uptake (IRT1, FRO2, and NAS) and in Zn storage (MTP3 and ZIF1). Surprisingly, mutant shoots did not show the transcriptional Fe deficiency response which is normally induced by Zn excess. Split-root experiments suggested that within roots the BTSL proteins act locally and downstream of systemic Fe deficiency signals. Together, our data show that constitutive low-level induction of the Fe deficiency response protects btsl1 btsl2 mutants from Zn toxicity. We propose that BTSL protein function is disadvantageous in situations of external Zn and Fe imbalances, and formulate a general model for Zn-Fe interactions in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Hierro/metabolismo , Zinc/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismoRESUMEN
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Dihidrolipoamida Deshidrogenasa/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Dihidrolipoamida Deshidrogenasa/genética , Genes de Plantas , Variación Genética , Genotipo , Proteínas Hierro-Azufre/genéticaRESUMEN
BACKGROUND: The nucleotide binding protein-like (NUBPL) gene was first reported as a cause of mitochondrial complex I deficiency (MIM 613621, 618242) in 2010. To date, only eight patients have been reported with this mitochondrial disorder. Five other patients were recently reported to have NUBPL disease but their clinical picture was different from the first eight patients. Here, we report clinical and genetic findings in five additional patients (four families). METHODS: Whole exome sequencing was used to identify patients with compound heterozygous NUBPL variants. Functional studies included RNA-Seq transcript analyses, missense variant biochemical analyses in a yeast model (Yarrowia lipolytica) and mitochondrial respiration experiments on patient fibroblasts. RESULTS: The previously reported c.815-27T>C branch-site mutation was found in all four families. In prior patients, c.166G>A [p.G56R] was always found in cis with c.815-27T>C, but only two of four families had both variants. The second variant found in trans with c.815-27T>C in each family was: c.311T>C [p.L104P] in three patients, c.693+1G>A in one patient and c.545T>C [p.V182A] in one patient. Complex I function in the yeast model was impacted by p.L104P but not p.V182A. Clinical features include onset of neurological symptoms at 3-18 months, global developmental delay, cerebellar dysfunction (including ataxia, dysarthria, nystagmus and tremor) and spasticity. Brain MRI showed cerebellar atrophy. Mitochondrial function studies on patient fibroblasts showed significantly reduced spare respiratory capacity. CONCLUSION: We report on five new patients with NUBPL disease, adding to the number and phenotypic variability of patients diagnosed worldwide, and review prior reported patients with pathogenic NUBPL variants.
Asunto(s)
Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Análisis Mutacional de ADN , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/fisiopatología , Linaje , RNA-Seq , Secuenciación del Exoma , Adulto JovenRESUMEN
Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Homeostasis , Modelos Biológicos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/químicaRESUMEN
Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.
Asunto(s)
Hierro , Triticum , Grano Comestible , Ácido Fítico , SemillasRESUMEN
Complex I deficiency is a common cause of mitochondrial disease, resulting from mutations in genes encoding structural subunits, assembly factors or defects in mitochondrial gene expression. Advances in genetic diagnostics and sequencing have led to identification of several variants in NUBPL (nucleotide binding protein-like), encoding an assembly factor of complex I, which are potentially pathogenic. To help assign pathogenicity and learn more about the function of NUBPL, amino acid substitutions were recreated in the homologous Ind1 protein of the yeast model Yarrowia lipolytica. Leu102Pro destabilized the Ind1 protein, leading to a null-mutant phenotype. Asp103Tyr, Leu191Phe and Gly285Cys affected complex I assembly to varying degrees, whereas Gly136Asp substitution in Ind1 did not impact on complex I levels nor dNADH:ubiquinone activity. Blue-native polyacrylamide gel electrophoresis and immunolabelling of the structural subunits NUBM and NUCM revealed that all Ind1 variants accumulated a Q module intermediate of complex I. In the Ind1 Asp103Tyr variant, the matrix arm intermediate was virtually absent, indicating a dominant effect. Dysfunction of Ind1, but not absence of complex I, rendered Y. lipolytica sensitive to cold. The Ind1 Gly285Cys variant was able to support complex I assembly at 28°C, but not at 10°C. Our results indicate that Ind1 is required for progression of assembly from the Q module to the full matrix arm. Cold sensitivity could be developed as a phenotype assay to demonstrate pathogenicity of NUBPL mutations and other complex I defects.
Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Yarrowia/metabolismo , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/genética , Humanos , Microorganismos Modificados Genéticamente , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Temperatura , Yarrowia/genéticaRESUMEN
The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron, and questions remain regarding which transporters are involved. Here, we characterize two nodule-specific Vacuolar iron Transporter-Like (VTL) proteins in Medicago truncatula. Localization of fluorescent fusion proteins and mutant studies were carried out to correlate with existing RNA-seq data showing differential expression of VTL4 and VTL8 during early and late infection, respectively. The vtl4 insertion lines showed decreased nitrogen fixation capacity associated with more immature nodules and less elongated bacteroids. A mutant line lacking the tandemly-arranged VTL4-VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was almost fully restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a moderate decrease in luminescence signal was observed in vtl4 mutant nodules and a strong decrease in 13U nodules. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. These data indicate that VTL8, the closest homologue of SEN1 in Lotus japonicus, is the main route for delivering iron to symbiotic rhizobia. We propose that a failure in iron protein maturation leads to early senescence of the bacteroids.
Asunto(s)
Medicago truncatula , Hierro , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , SimbiosisRESUMEN
Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.
Asunto(s)
Biofortificación , Productos Agrícolas/genética , Hierro/metabolismo , Biofortificación/métodos , Edición Génica , Fitomejoramiento , Plantas Modificadas GenéticamenteRESUMEN
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glutatión Reductasa/metabolismo , Glutatión/metabolismo , Plastidios/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Prueba de Complementación Genética , Glutatión Reductasa/genética , Mitocondrias/metabolismo , Mutación , Oxidación-Reducción , Plantas Modificadas Genéticamente , Plastidios/genética , Semillas/genéticaRESUMEN
During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4 Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Germinación/fisiología , Hierro/metabolismo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Mutación , Plastidios/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/fisiologíaRESUMEN
Mitochondria play a key role in the biosynthesis of two metal cofactors, iron-sulfur (FeS) clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but a scarcity of mutants has hindered studies to better understand these links. We screened a collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3 (ABC transporter of the mitochondria 3), encoding the ATP-binding cassette transporter of the mitochondria 3 (systematic name ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco biosynthesis. We also identified a mutant allele in CNX2, cofactor of nitrate reductase and xanthine dehydrogenase 2, encoding GTP 3',8-cyclase, the first step in Moco biosynthesis which is localized in the mitochondria. A single-nucleotide polymorphism in cnx2-2 leads to substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are small and chlorotic, with severely decreased Moco enzyme activities, but they performed better than a cnx2-1 knockout mutant, which could only survive with ammonia as a nitrogen source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC-MS/MS showed that this Moco intermediate was below the limit of detection in both cnx2-1 and cnx2-2, and accumulated more than 10-fold in seedlings mutated in the downstream gene CNX5 Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous reports of a similar decrease in nitrate reductase activity. Taken together, our data functionally characterize CNX2 and suggest that ATM3 is indirectly required for cPMP synthesis.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Compuestos Organofosforados/metabolismo , Pterinas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Amoníaco/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Coenzimas/biosíntesis , Eliminación de Gen , Metaloproteínas/biosíntesis , Mitocondrias/ultraestructura , Cofactores de Molibdeno , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pteridinas , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Espectrometría de Masas en TándemRESUMEN
Proteins of the cytosolic pathway for iron-sulphur (FeS) cluster assembly are conserved, except that plants lack a gene for CFD1 (Cytosolic FeS cluster Deficient 1). This poses the question of how NBP35 (Nucleotide-Binding Protein 35â kDa), the heteromeric partner of CFD1 in metazoa, functions on its own in plants. Firstly, we created viable mutant alleles of NBP35 in Arabidopsis to overcome embryo lethality of previously reported knockout mutations. RNAi knockdown lines with less than 30% NBP35 protein surprisingly showed no developmental or biochemical differences to wild-type. Substitution of Cys14 to Ala, which destabilized the N-terminal Fe4 S4 cluster in vitro, caused mild growth defects and a significant decrease in the activity of cytosolic FeS enzymes such as aconitase and aldehyde oxidases. The DNA glycosylase ROS1 was only partially decreased in activity and xanthine dehydrogenase not at all. Plants with strongly depleted NBP35 protein in combination with Cys14 to Ala substitution had distorted leaf development and decreased FeS enzyme activities. To find protein interaction partners of NBP35, a yeast-two-hybrid screen was carried out that identified NBP35 and DRE2 (Derepressed for Ribosomal protein S14 Expression). NBP35 is known to form a dimer, and DRE2 acts upstream in the cytosolic FeS protein assembly pathway. The NBP35-DRE2 interaction was not disrupted by Cys14 to Ala substitution. Our results show that NBP35 has a function in the maturation of FeS proteins that is conserved in plants, and is closely allied to the function of DRE2.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Hierro-Azufre/genética , Mutación Missense , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Interferencia de ARN , Homología de Secuencia de AminoácidoRESUMEN
Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat (Triticum aestivum) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER (VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast (Saccharomyces cerevisiae) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley (Hordeum vulgare). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms.
Asunto(s)
Biofortificación , Hierro/metabolismo , Manganeso/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Vacuolas/metabolismo , Transporte Biológico , Endospermo/metabolismo , Harina , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Fenotipo , Ácido Fítico/metabolismo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Triticum/genéticaRESUMEN
Background: Iron deficiency is an enduring global health problem that requires new remedial approaches. Iron absorption from soybean-derived ferritin, an â¼550-kDa iron storage protein, is comparable to bioavailable ferrous sulfate (FeSO4). However, the absorption of ferritin is reported to involve an endocytic mechanism, independent of divalent metal ion transporter 1 (DMT-1), the transporter for nonheme iron. Objective: Our overall aim was to examine the potential of purified ferritin from peas (Pisum sativum) as a food supplement by measuring its stability under gastric pH treatment and the mechanisms of iron uptake into Caco-2 cells. Methods: Caco-2 cells were treated with native or gastric pH-treated pea ferritin in combination with dietary modulators of nonheme iron uptake, small interfering RNA targeting DMT-1, or chemical inhibitors of endocytosis. Cellular ferritin formation, a surrogate measure of iron uptake, and internalization of pea ferritin with the use of specific antibodies were measured. The production of reactive oxygen species (ROS) in response to equimolar concentrations of native pea ferritin and FeSO4 was also compared. Results: Pea ferritin exposed to gastric pH treatment was degraded, and the released iron was transported into Caco-2 cells by DMT-1. Inhibitors of DMT-1 and nonheme iron absorption reduced iron uptake by 26-40%. Conversely, in the absence of gastric pH treatment, the iron uptake of native pea ferritin was unaffected by inhibitors of nonheme iron absorption, and the protein was observed to be internalized in Caco-2 cells. Chlorpromazine (clathrin-mediated endocytosis inhibitor) reduced the native pea ferritin content within cells by â¼30%, which confirmed that the native pea ferritin was transported into cells via a clathrin-mediated endocytic pathway. In addition, 60% less ROS production resulted from native pea ferritin in comparison to FeSO4. Conclusion: With consideration that nonheme dietary inhibitors display no effect on iron uptake and the low oxidative potential relative to FeSO4, intact pea ferritin appears to be a promising iron supplement.
Asunto(s)
Endocitosis , Ferritinas/farmacocinética , Ácido Gástrico , Hierro/metabolismo , Pisum sativum/química , Proteínas de Plantas/farmacocinética , Estómago/química , Anemia Ferropénica/tratamiento farmacológico , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Proteínas de Transporte de Catión/metabolismo , Dieta , Proteínas en la Dieta/aislamiento & purificación , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacocinética , Proteínas en la Dieta/uso terapéutico , Suplementos Dietéticos , Ferritinas/aislamiento & purificación , Ferritinas/metabolismo , Ferritinas/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Absorción Intestinal , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Glycine max/químicaRESUMEN
The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways.
Asunto(s)
Citosol/metabolismo , Glutatión/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker's yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function.