Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(1): 145-159, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38290977

RESUMEN

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Filogenia , Genotipo , Ratones Endogámicos , Fenotipo , Mutación , Variación Genética
2.
Genome Res ; 33(6): 857-871, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217254

RESUMEN

The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.


Asunto(s)
Metilación de ADN , Histonas , Humanos , Ratones , Animales , Histonas/genética , Histonas/metabolismo , Regiones Promotoras Genéticas , Cromatina/genética , Epigénesis Genética , Código de Histonas , Ratones Endogámicos , Expresión Génica
3.
Nucleic Acids Res ; 51(D1): D1067-D1074, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36330959

RESUMEN

The Mouse Phenome Database (MPD; https://phenome.jax.org; RRID:SCR_003212), supported by the US National Institutes of Health, is a Biomedical Data Repository listed in the Trans-NIH Biomedical Informatics Coordinating Committee registry. As an increasingly FAIR-compliant and TRUST-worthy data repository, MPD accepts phenotype and genotype data from mouse experiments and curates, organizes, integrates, archives, and distributes those data using community standards. Data are accompanied by rich metadata, including widely used ontologies and detailed protocols. Data are from all over the world and represent genetic, behavioral, morphological, and physiological disease-related characteristics in mice at baseline or those exposed to drugs or other treatments. MPD houses data from over 6000 strains and populations, representing many reproducible strain types and heterogenous populations such as the Diversity Outbred where each mouse is unique but can be genotyped throughout the genome. A suite of analysis tools is available to aggregate, visualize, and analyze these data within and across studies and populations in an increasingly traceable and reproducible manner. We have refined existing resources and developed new tools to continue to provide users with access to consistent, high-quality data that has translational relevance in a modernized infrastructure that enables interaction with a suite of bioinformatics analytic and data services.


Asunto(s)
Bases de Datos Genéticas , Fenómica , Ratones , Animales , Ratones Endogámicos , Fenotipo , Genotipo
4.
Mamm Genome ; 34(4): 509-519, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37581698

RESUMEN

The Mouse Phenome Database continues to serve as a curated repository and analysis suite for measured attributes of members of diverse mouse populations. The repository includes annotation to community standard ontologies and guidelines, a database of allelic states for 657 mouse strains, a collection of protocols, and analysis tools for flexible, interactive, user directed analyses that increasingly integrates data across traits and populations. The database has grown from its initial focus on a standard set of inbred strains to include heterogeneous mouse populations such as the Diversity Outbred and mapping crosses and well as Collaborative Cross, Hybrid Mouse Diversity Panel, and recombinant inbred strains. Most recently the system has expanded to include data from the International Mouse Phenotyping Consortium. Collectively these data are accessible by API and provided with an interactive tool suite that enables users' persistent selection, storage, and operation on collections of measures. The tool suite allows basic analyses, advanced functions with dynamic visualization including multi-population meta-analysis, multivariate outlier detection, trait pattern matching, correlation analyses and other functions. The data resources and analysis suite provide users a flexible environment in which to explore the basis of phenotypic variation in health and disease across the lifespan.


Asunto(s)
Fenómica , Ratones , Animales , Ratones Endogámicos , Fenotipo
5.
Mamm Genome ; 34(3): 364-378, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37076585

RESUMEN

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.


Asunto(s)
Ontologías Biológicas , Disciplinas de las Ciencias Biológicas , Estudio de Asociación del Genoma Completo , Fenotipo
6.
Am J Transplant ; 20(6): 1582-1596, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31883229

RESUMEN

Disparities in organ acceptance practices exacerbate donor heart nonuse and lead to increased waiting times and mortality for heart transplant candidates. We studied disparities in donor heart acceptance among US transplant centers and their relations to posttransplant outcomes. Candidate, potential transplant recipient match run, and deceased donor data were obtained from the United Network for Organ Sharing. We analyzed donor, candidate, and transplant center characteristics with respect to organ acceptance, offer acceptance, number of offers before acceptance (organ sequence number), and association with posttransplant mortality. A total of 693 420 donor heart offers made between April 2007 and December 2015 were included. We identified great variability in donor heart acceptance practices among US heart transplant centers. We identified donor and recipient characteristics that were strongly associated with heart organ and offer acceptance, and organ sequence number, and identified inconsistencies among centers with respect to how these characteristics influenced acceptance decisions. Finally, we identified characteristics that were highly predictive of donor heart nonuse and were not associated with increased recipient mortality, which may guide future efforts aimed at increasing use of available hearts for transplantation.


Asunto(s)
Trasplante de Corazón , Obtención de Tejidos y Órganos , Humanos , Donantes de Tejidos , Receptores de Trasplantes , Estados Unidos , Listas de Espera
7.
J Comput Assist Tomogr ; 43(5): 690-696, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490891

RESUMEN

PURPOSE: The aim of the study was to refine and validate the NeuroImaging Radiological Interpretation System (NIRIS), which was developed to predict management and clinical outcome based on noncontrast head computerized tomography findings in patients suspected of acute traumatic brain injury (TBI). METHODS: We assessed the performance of the NIRIS score in a prospective, single-center cohort of patients suspected of TBI (n = 648) and compared the performance of NIRIS with that of the Marshall and Rotterdam scoring systems. We also revised components of the NIRIS scoring system using decision tree methodologies implemented on pooled data from the retrospective and prospective studies (N = 1190). RESULTS: The NIRIS performed similarly to the Marshall and Rotterdam scoring systems in predicting mortality and markedly better in terms of predicting more granular elements of disposition and management of TBI patients, such as admission, follow-up imaging, intensive care unit stay, and neurosurgical procedures. The revised NIRIS classification correctly predicted disposition and outcome in 91.2% (331/363) after excluding patients with other major extracranial traumatic injuries or intracranial nontraumatic injuries. CONCLUSIONS: The present study further demonstrates the predictive value of NIRIS in guiding standardized clinical management and decision-making regarding treatment options for TBI patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Lesiones Traumáticas del Encéfalo/mortalidad , Lesiones Traumáticas del Encéfalo/terapia , Toma de Decisiones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Índices de Gravedad del Trauma
8.
J Comput Assist Tomogr ; 43(3): 452-459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31082951

RESUMEN

PURPOSE: To investigate whether selected carotid computed tomography angiography (CTA) quantitative features can predict 10-year atherosclerotic cardiovascular disease (ASCVD) risk scores. METHODS: One hundred seventeen patients with calculated ASCVD risk scores were considered. A semiautomated imaging analysis software was used to segment and quantify plaque features. Eighty patients were randomly selected to build models using 14 imaging variables and the calculated ASCVD risk score as the end point (continuous and binarized). The remaining 37 patients were used as the test set to generate predicted ASCVD scores. The predicted and observed ASCVD risk scores were compared to assess properties of the predictive model. RESULTS: Nine of 14 CTA imaging variables were included in a model that considered the plaque features in a continuous fashion (model 1) and 6 in a model that considered the plaque features dichotomized (model 2). The predicted ASCVD risk scores were 18.87% ± 13.26% and 18.39% ± 11.6%, respectively. There were strong correlations between the observed ASCVD and the predicted ASCVDs, with r = 0.736 for model 1 and r = 0.657 for model 2. The mean biases between observed ASCVD and predicted ASCVDs were -1.954% ± 10.88% and -1.466% ± 12.04%, respectively. CONCLUSIONS: Selected quantitative imaging carotid features extracted from the semiautomated carotid artery analysis can predict the ASCVD risk scores.


Asunto(s)
Estenosis Carotídea/patología , Angiografía por Tomografía Computarizada/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Anciano , Estenosis Carotídea/diagnóstico por imagen , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Medición de Riesgo , Programas Informáticos
9.
Stroke ; 49(7): 1741-1746, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29739912

RESUMEN

BACKGROUND AND PURPOSE: Parenchymal hemorrhage (PH) after endovascular mechanical thrombectomy in acute ischemic stroke leads to worse outcomes. Better clinical and imaging biomarkers of symptomatic reperfusion PH are needed to identify patients at risk. We identified clinical and imaging predictors of reperfusion PH after endovascular mechanical thrombectomy with attention to early cerebral veins (ECVs) on postreperfusion digital subtraction angiography. METHODS: We performed a retrospective cohort study of consecutive acute ischemic stroke patients undergoing endovascular mechanical thrombectomy at our neurovascular referral center. Clinical and imaging characteristics were collected from patient health records, and random forest variable importance measures were used to identify predictors of symptomatic PH. Predictors of secondary outcomes, including 90-day mortality, functional dependence (modified Rankin Scale score, >2), and National Institutes of Health Stroke Scale shift, were also determined. Diagnostic test characteristics of ECV for symptomatic PH were determined using a receiver operating characteristic analysis. Differences between patients with and without symptomatic PH were assessed with Fisher exact test and the Wilcoxon rank sum (Mann-Whitney U test) test at the 0.05 significance level. RESULTS: Of 64 patients with anterior circulation large-vessel occlusion identified, 6 (9.4%) developed symptomatic PH. ECV was the strongest predictor of symptomatic PH with more than twice the importance of the next best predictor, male sex. Although ECV was also predictive of 90-day mortality and functional dependence, other characteristics were more important than ECV for these outcomes. The sensitivity and specificity of ECV alone for subsequent hemorrhage were both 0.83, with an area under the curve of 0.83 and 95% confidence interval of 0.66 to 1.00. CONCLUSIONS: ECV on postendovascular mechanical thrombectomy digital subtraction angiography is highly diagnostic of subsequent symptomatic reperfusion hemorrhage in this data set. This finding has important implications for post-treatment management of blood pressure and anticoagulation.


Asunto(s)
Isquemia Encefálica/complicaciones , Hemorragias Intracraneales/etiología , Daño por Reperfusión/etiología , Accidente Cerebrovascular/complicaciones , Anciano , Anciano de 80 o más Años , Angiografía de Substracción Digital , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/mortalidad , Procedimientos Endovasculares , Femenino , Humanos , Hemorragias Intracraneales/diagnóstico por imagen , Hemorragias Intracraneales/mortalidad , Masculino , Pronóstico , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/mortalidad , Sensibilidad y Especificidad , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/mortalidad , Tasa de Supervivencia , Trombectomía , Terapia Trombolítica
10.
PLoS Med ; 15(11): e1002699, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30481176

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) of the knee is the preferred method for diagnosing knee injuries. However, interpretation of knee MRI is time-intensive and subject to diagnostic error and variability. An automated system for interpreting knee MRI could prioritize high-risk patients and assist clinicians in making diagnoses. Deep learning methods, in being able to automatically learn layers of features, are well suited for modeling the complex relationships between medical images and their interpretations. In this study we developed a deep learning model for detecting general abnormalities and specific diagnoses (anterior cruciate ligament [ACL] tears and meniscal tears) on knee MRI exams. We then measured the effect of providing the model's predictions to clinical experts during interpretation. METHODS AND FINDINGS: Our dataset consisted of 1,370 knee MRI exams performed at Stanford University Medical Center between January 1, 2001, and December 31, 2012 (mean age 38.0 years; 569 [41.5%] female patients). The majority vote of 3 musculoskeletal radiologists established reference standard labels on an internal validation set of 120 exams. We developed MRNet, a convolutional neural network for classifying MRI series and combined predictions from 3 series per exam using logistic regression. In detecting abnormalities, ACL tears, and meniscal tears, this model achieved area under the receiver operating characteristic curve (AUC) values of 0.937 (95% CI 0.895, 0.980), 0.965 (95% CI 0.938, 0.993), and 0.847 (95% CI 0.780, 0.914), respectively, on the internal validation set. We also obtained a public dataset of 917 exams with sagittal T1-weighted series and labels for ACL injury from Clinical Hospital Centre Rijeka, Croatia. On the external validation set of 183 exams, the MRNet trained on Stanford sagittal T2-weighted series achieved an AUC of 0.824 (95% CI 0.757, 0.892) in the detection of ACL injuries with no additional training, while an MRNet trained on the rest of the external data achieved an AUC of 0.911 (95% CI 0.864, 0.958). We additionally measured the specificity, sensitivity, and accuracy of 9 clinical experts (7 board-certified general radiologists and 2 orthopedic surgeons) on the internal validation set both with and without model assistance. Using a 2-sided Pearson's chi-squared test with adjustment for multiple comparisons, we found no significant differences between the performance of the model and that of unassisted general radiologists in detecting abnormalities. General radiologists achieved significantly higher sensitivity in detecting ACL tears (p-value = 0.002; q-value = 0.019) and significantly higher specificity in detecting meniscal tears (p-value = 0.003; q-value = 0.019). Using a 1-tailed t test on the change in performance metrics, we found that providing model predictions significantly increased clinical experts' specificity in identifying ACL tears (p-value < 0.001; q-value = 0.006). The primary limitations of our study include lack of surgical ground truth and the small size of the panel of clinical experts. CONCLUSIONS: Our deep learning model can rapidly generate accurate clinical pathology classifications of knee MRI exams from both internal and external datasets. Moreover, our results support the assertion that deep learning models can improve the performance of clinical experts during medical imaging interpretation. Further research is needed to validate the model prospectively and to determine its utility in the clinical setting.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Lesiones de Menisco Tibial/diagnóstico por imagen , Adulto , Automatización , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
11.
PLoS Med ; 15(11): e1002686, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30457988

RESUMEN

BACKGROUND: Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based diagnostic error and lack of diagnostic expertise in areas of the world where radiologists are not available. Recently, deep learning approaches have been able to achieve expert-level performance in medical image interpretation tasks, powered by large network architectures and fueled by the emergence of large labeled datasets. The purpose of this study is to investigate the performance of a deep learning algorithm on the detection of pathologies in chest radiographs compared with practicing radiologists. METHODS AND FINDINGS: We developed CheXNeXt, a convolutional neural network to concurrently detect the presence of 14 different pathologies, including pneumonia, pleural effusion, pulmonary masses, and nodules in frontal-view chest radiographs. CheXNeXt was trained and internally validated on the ChestX-ray8 dataset, with a held-out validation set consisting of 420 images, sampled to contain at least 50 cases of each of the original pathology labels. On this validation set, the majority vote of a panel of 3 board-certified cardiothoracic specialist radiologists served as reference standard. We compared CheXNeXt's discriminative performance on the validation set to the performance of 9 radiologists using the area under the receiver operating characteristic curve (AUC). The radiologists included 6 board-certified radiologists (average experience 12 years, range 4-28 years) and 3 senior radiology residents, from 3 academic institutions. We found that CheXNeXt achieved radiologist-level performance on 11 pathologies and did not achieve radiologist-level performance on 3 pathologies. The radiologists achieved statistically significantly higher AUC performance on cardiomegaly, emphysema, and hiatal hernia, with AUCs of 0.888 (95% confidence interval [CI] 0.863-0.910), 0.911 (95% CI 0.866-0.947), and 0.985 (95% CI 0.974-0.991), respectively, whereas CheXNeXt's AUCs were 0.831 (95% CI 0.790-0.870), 0.704 (95% CI 0.567-0.833), and 0.851 (95% CI 0.785-0.909), respectively. CheXNeXt performed better than radiologists in detecting atelectasis, with an AUC of 0.862 (95% CI 0.825-0.895), statistically significantly higher than radiologists' AUC of 0.808 (95% CI 0.777-0.838); there were no statistically significant differences in AUCs for the other 10 pathologies. The average time to interpret the 420 images in the validation set was substantially longer for the radiologists (240 minutes) than for CheXNeXt (1.5 minutes). The main limitations of our study are that neither CheXNeXt nor the radiologists were permitted to use patient history or review prior examinations and that evaluation was limited to a dataset from a single institution. CONCLUSIONS: In this study, we developed and validated a deep learning algorithm that classified clinically important abnormalities in chest radiographs at a performance level comparable to practicing radiologists. Once tested prospectively in clinical settings, the algorithm could have the potential to expand patient access to chest radiograph diagnostics.


Asunto(s)
Competencia Clínica , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Neumonía/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Radiólogos , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos
12.
Radiology ; 286(3): 845-852, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29135365

RESUMEN

Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material-enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Embolia Pulmonar/diagnóstico por imagen , Algoritmos , Humanos , Procesamiento de Lenguaje Natural , Curva ROC , Radiografía Torácica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
13.
J Comput Assist Tomogr ; 42(6): 898-905, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30407249

RESUMEN

OBJECTIVE: The aim of this study was to characterize the relationship between computed tomography angiography imaging characteristics of coronary artery and atherosclerotic cardiovascular disease (ASCVD) score. METHODS: We retrospectively identified all patients who underwent a coronary computed tomography angiography at our institution from December 2013 to July 2016, then we calculated the 10-year ASCVD score. We characterized the relationship between coronary artery imaging findings and ASCVD risk score. RESULTS: One hundred fifty-one patients met our inclusion criteria. Patients with a 10-year ASCVD score of 7.5% or greater had significantly more arterial segments showing stenosis (46.4%, P = 0.008) and significantly higher maximal plaque thickness (1.25 vs 0.53, P = 0.001). However, among 56 patients with a 10-year ASCVD score of 7.5% or greater, 30 (53.6%) had no arterial stenosis. Furthermore, among the patients with a 10-year ASCVD score of less than 7.5%, 24 (25.3%) had some arterial stenosis. CONCLUSIONS: There is some concordance but not a perfect overlap between 10-year ASCVD risk scores and coronary artery imaging findings.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Adulto , Anciano , American Heart Association , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Estados Unidos
14.
Stroke ; 48(6): 1675-1677, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386041

RESUMEN

BACKGROUND AND PURPOSE: Imaging biomarkers are increasingly used as selection criteria for stroke clinical trials. The goal of our study was to determine the prevalence of commonly studied imaging biomarkers in different time windows after acute ischemic stroke onset to better facilitate the design of stroke clinical trials using such biomarkers for patient selection. METHODS: This retrospective study included 612 patients admitted with a clinical suspicion of acute ischemic stroke with symptom onset no more than 24 hours before completing baseline imaging. Patients with subacute/chronic/remote infarcts and hemorrhage were excluded from this study. Imaging biomarkers were extracted from baseline imaging, which included a noncontrast head computed tomography (CT), perfusion CT, and CT angiography. The prevalence of dichotomized versions of each of the imaging biomarkers in several time windows (time since symptom onset) was assessed and statistically modeled to assess time dependence (not lack thereof). RESULTS: We created tables showing the prevalence of the imaging biomarkers pertaining to the core, the penumbra and the arterial occlusion for different time windows. All continuous imaging features vary over time. The dichotomized imaging features that vary significantly over time include: noncontrast head computed tomography Alberta Stroke Program Early CT (ASPECT) score and dense artery sign, perfusion CT infarct volume, and CT angiography collateral score and visible clot. The dichotomized imaging features that did not vary significantly over time include the thresholded perfusion CT penumbra volumes. CONCLUSIONS: As part of the feasibility analysis in stroke clinical trials, this analysis and the resulting tables can help investigators determine sample size and the number needed to screen.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Ensayos Clínicos como Asunto , Angiografía por Tomografía Computarizada/métodos , Reperfusión/métodos , Proyectos de Investigación , Accidente Cerebrovascular/diagnóstico por imagen , Biomarcadores , Estudios de Factibilidad , Humanos , Prevalencia , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
15.
BMC Genomics ; 17(1): 628, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519264

RESUMEN

BACKGROUND: The continuous and non-synchronous nature of postnatal male germ-cell development has impeded stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages. RESULTS: Germ cells from testes of individual mice were obtained at two-day intervals from 8 to 18 days post-partum (dpp), prepared as surface-spread chromatin and immunolabeled for meiotic stage-specific protein markers (STRA8, SYCP3, phosphorylated H2AFX, and HISTH1T). Eight stages were discriminated cytologically by combinatorial antibody labeling, and RNA-seq was performed on the same samples. Independent principal component analyses of cytological and transcriptomic data yielded similar patterns for both data types, providing strong evidence for substage-specific gene expression signatures. A novel permutation-based maximum covariance analysis (PMCA) was developed to map co-expressed transcripts to one or more of the eight meiotic prophase substages, thereby linking distinct molecular programs to cytologically defined cell states. Expression of meiosis-specific genes is not substage-limited, suggesting regulation of substage transitions at other levels. CONCLUSIONS: This integrated analysis provides a general method for resolving complex cell populations. Here it revealed not only features of meiotic substage-specific gene expression, but also a network of substage-specific transcription factors and relationships to potential target genes.


Asunto(s)
Meiosis , ARN/metabolismo , Espermatocitos/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Redes Reguladoras de Genes , Células Germinativas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , ARN/química , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Espermatocitos/citología , Espermatogénesis , Testículo/citología , Factores de Transcripción/metabolismo , Transcriptoma
16.
Hum Mol Genet ; 21(22): 4957-65, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22899649

RESUMEN

Somatic copy-number alterations (SCNAs) play a crucial role in the development of human cancer. However, it is not well understood what evolutionary mechanisms contribute to the global patterns of SCNAs in cancer genomes. Taking advantage of data recently available through The Cancer Genome Atlas, we performed a systematic analysis on genome-wide SCNA breakpoint data for eight cancer types. First, we observed a high degree of overall similarity among the SCNA breakpoint landscapes of different cancer types. Then, we compiled 19 genomic features and evaluated their effects on the observed SCNA patterns. We found that evolutionary indel and substitution rates between species (i.e. humans and chimpanzees) consistently show the strongest correlations with breakpoint frequency among all the surveyed features; whereas the effects of some features are quite cancer-type dependent. Focusing on SCNA breakpoint hotspots, we found that cancer-type-specific breakpoint hotspots and common hotspots show distinct patterns. Cancer-type-specific hotspots are enriched with known cancer genes but are poorly predicted from genomic features; whereas common hotspots show the opposite patterns. This contrast suggests that explaining high-frequency SCNAs in cancer may require different evolutionary models: positive selection driven by cancer genes, and non-adaptive evolution related to an intrinsically unstable genomic context. Our results not only present a systematic view of the effects of genetic factors on genome-wide SCNA patterns, but also provide deep insights into the evolutionary process of SCNAs in cancer.


Asunto(s)
Puntos de Rotura del Cromosoma , Variaciones en el Número de Copia de ADN , Neoplasias/genética , Análisis por Conglomerados , Hibridación Genómica Comparativa , Evolución Molecular , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Genómica , Humanos , Modelos Genéticos , Curva ROC
17.
Radiol Artif Intell ; 6(1): e230256, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169426

RESUMEN

Purpose To evaluate and report the performance of the winning algorithms of the Radiological Society of North America Cervical Spine Fracture AI Challenge. Materials and Methods The competition was open to the public on Kaggle from July 28 to October 27, 2022. A sample of 3112 CT scans with and without cervical spine fractures (CSFx) were assembled from multiple sites (12 institutions across six continents) and prepared for the competition. The test set had 1093 scans (private test set: n = 789; mean age, 53.40 years ± 22.86 [SD]; 509 males; public test set: n = 304; mean age, 52.51 years ± 20.73; 189 males) and 847 fractures. The eight top-performing artificial intelligence (AI) algorithms were retrospectively evaluated, and the area under the receiver operating characteristic curve (AUC) value, F1 score, sensitivity, and specificity were calculated. Results A total of 1108 contestants composing 883 teams worldwide participated in the competition. The top eight AI models showed high performance, with a mean AUC value of 0.96 (95% CI: 0.95, 0.96), mean F1 score of 90% (95% CI: 90%, 91%), mean sensitivity of 88% (95% Cl: 86%, 90%), and mean specificity of 94% (95% CI: 93%, 96%). The highest values reported for previous models were an AUC of 0.85, F1 score of 81%, sensitivity of 76%, and specificity of 97%. Conclusion The competition successfully facilitated the development of AI models that could detect and localize CSFx on CT scans with high performance outcomes, which appear to exceed known values of previously reported models. Further study is needed to evaluate the generalizability of these models in a clinical environment. Keywords: Cervical Spine, Fracture Detection, Machine Learning, Artificial Intelligence Algorithms, CT, Head/Neck Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Fracturas Óseas , Fracturas de la Columna Vertebral , Masculino , Humanos , Persona de Mediana Edad , Inteligencia Artificial , Estudios Retrospectivos , Algoritmos , Fracturas de la Columna Vertebral/diagnóstico , Vértebras Cervicales/diagnóstico por imagen
18.
Radiol Artif Intell ; 6(3): e230227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477659

RESUMEN

The Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data involves dealing with issues of patient privacy and data security. Furthermore, ensuring quality and consistency in data, which includes expert labeling and accounting for various patient and imaging characteristics, necessitates substantial planning and resources. Overcoming these obstacles requires meticulous project management and adherence to strict timelines. The article also highlights the potential of crowdsourced annotation to progress medical imaging research. Through the RSNA competitions, an effective global engagement has been realized, resulting in innovative solutions to complex medical imaging problems, thus potentially transforming health care by enhancing diagnostic accuracy and patient outcomes. Keywords: Use of AI in Education, Artificial Intelligence © RSNA, 2024.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Diagnóstico por Imagen/métodos , Sociedades Médicas , América del Norte
19.
Bioinformatics ; 28(9): 1246-52, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22419784

RESUMEN

MOTIVATION: The phenotypes of knockout mice provide crucial information for understanding the biological functions of mammalian genes. Among various knockout phenotypes, lethality is of great interest because those involved genes play essential roles. With the availability of large-scale genomic data, we aimed to assess how well the integration of various genomic features can predict the lethal phenotype of single-gene knockout mice. RESULTS: We first assembled a comprehensive list of 491 candidate genomic features derived from diverse data sources. Using mouse genes with a known phenotype as the training set, we integrated the informative genomic features to predict the knockout lethality through three machine learning methods. Based on cross-validation, our models could achieve a good performance (accuracy = 73% and recall = 63%). Our results serve as a valuable practical resource in the mouse genetics research community, and also accelerate the translation of the knowledge of mouse genes into better strategies for studying human disease.


Asunto(s)
Inteligencia Artificial , Genes Letales , Ratones/genética , Fenotipo , Animales , Humanos , Ratones Noqueados , Modelos Animales
20.
Commun Biol ; 6(1): 244, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879097

RESUMEN

Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.


Asunto(s)
Bordetella pertussis , Histamina , Animales , Ratones , Bordetella pertussis/genética , Toxina del Pertussis , Transducción de Señal , Proteínas del Sistema Complemento , Sitios Genéticos , Glicoproteínas de Membrana , Péptidos y Proteínas de Señalización Intracelular , Ribonucleoproteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA