Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 384(5): 417-427, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33289973

RESUMEN

BACKGROUND: Current strategies for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited to nonpharmacologic interventions. Hydroxychloroquine has been proposed as a postexposure therapy to prevent coronavirus disease 2019 (Covid-19), but definitive evidence is lacking. METHODS: We conducted an open-label, cluster-randomized trial involving asymptomatic contacts of patients with polymerase-chain-reaction (PCR)-confirmed Covid-19 in Catalonia, Spain. We randomly assigned clusters of contacts to the hydroxychloroquine group (which received the drug at a dose of 800 mg once, followed by 400 mg daily for 6 days) or to the usual-care group (which received no specific therapy). The primary outcome was PCR-confirmed, symptomatic Covid-19 within 14 days. The secondary outcome was SARS-CoV-2 infection, defined by symptoms compatible with Covid-19 or a positive PCR test regardless of symptoms. Adverse events were assessed for up to 28 days. RESULTS: The analysis included 2314 healthy contacts of 672 index case patients with Covid-19 who were identified between March 17 and April 28, 2020. A total of 1116 contacts were randomly assigned to receive hydroxychloroquine and 1198 to receive usual care. Results were similar in the hydroxychloroquine and usual-care groups with respect to the incidence of PCR-confirmed, symptomatic Covid-19 (5.7% and 6.2%, respectively; risk ratio, 0.86 [95% confidence interval, 0.52 to 1.42]). In addition, hydroxychloroquine was not associated with a lower incidence of SARS-CoV-2 transmission than usual care (18.7% and 17.8%, respectively). The incidence of adverse events was higher in the hydroxychloroquine group than in the usual-care group (56.1% vs. 5.9%), but no treatment-related serious adverse events were reported. CONCLUSIONS: Postexposure therapy with hydroxychloroquine did not prevent SARS-CoV-2 infection or symptomatic Covid-19 in healthy persons exposed to a PCR-positive case patient. (Funded by the crowdfunding campaign YoMeCorono and others; BCN-PEP-CoV2 ClinicalTrials.gov number, NCT04304053.).


Asunto(s)
Antiinfecciosos/uso terapéutico , COVID-19/prevención & control , Hidroxicloroquina/uso terapéutico , SARS-CoV-2 , Adulto , Antiinfecciosos/efectos adversos , COVID-19/transmisión , COVID-19/virología , Transmisión de Enfermedad Infecciosa/prevención & control , Método Doble Ciego , Femenino , Humanos , Hidroxicloroquina/efectos adversos , Masculino , Persona de Mediana Edad , Cooperación del Paciente , Insuficiencia del Tratamiento , Carga Viral
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791357

RESUMEN

The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.


Asunto(s)
COVID-19 , Células Epiteliales , Pulmón , Proteína Adaptadora de Señalización NOD1 , SARS-CoV-2 , Humanos , Células A549 , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Tratamiento Farmacológico de COVID-19 , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/farmacología , Células Epiteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Inmunidad Innata/efectos de los fármacos , Interleucina-8/metabolismo , Pulmón/inmunología , Pulmón/virología , Pulmón/metabolismo , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD1/agonistas , Proteína Adaptadora de Señalización NOD2/agonistas , Proteína Adaptadora de Señalización NOD2/metabolismo , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , Transducción de Señal/efectos de los fármacos
3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499329

RESUMEN

HIV latent infection may be associated with disrupted viral RNA sensing, interferon (IFN) signaling, and/or IFN stimulating genes (ISG) activation. Here, we evaluated the use of compounds selectively targeting at the inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex subunits and related kinases (TBK1) as a novel pathway to reverse HIV-1 latency in latently infected non-clonal lymphoid and myeloid cell in vitro models. IKK inhibitors (IKKis) triggered up to a 1.8-fold increase in HIV reactivation in both, myeloid and lymphoid cell models. The best-in-class IKKis, targeting TBK-1 (MRT67307) and IKKß (TCPA-1) respectively, were also able to significantly induce viral reactivation in CD4+ T cells from people living with HIV (PLWH) ex vivo. More importantly, although none of the compounds tested showed antiviral activity, the combination of the distinct IKKis with ART did not affect the latency reactivation nor blockade of HIV infection by ART. Finally, as expected, IKKis did not upregulate cell activation markers in primary lymphocytes and innate immune signaling was blocked, resulting in downregulation of inflammatory cytokines. Overall, our results support a dual role of IKKis as immune modulators being able to tackle the HIV latent reservoir in lymphoid and myeloid cellular models and putatively control the hyperinflammatory responses in chronic HIV-1 infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Latencia del Virus , Activación Viral , Linfocitos T CD4-Positivos
4.
Clin Infect Dis ; 73(11): e4073-e4081, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32674126

RESUMEN

BACKGROUND: No effective treatments for coronavirus disease 2019 (COVID-19) exist. We aimed to determine whether early treatment with hydroxychloroquine (HCQ) would be efficacious for outpatients with COVID-19. METHODS: Multicenter open-label, randomized, controlled trial conducted in Catalonia, Spain, between 17 March and 26 May 2020. Patients recently diagnosed with <5-day of symptom onset were assigned to receive HCQ (800 mg on day 1 followed by 400 mg once daily for 6 days) or usual care. Outcomes were reduction of viral load in nasopharyngeal swabs up to 7 days after treatment start, disease progression up to 28 days, and time to complete resolution of symptoms. Adverse events were assessed up to 28 days. RESULTS: A total of 293 patients were eligible for intention-to-treat analysis: 157 in the control arm and 136 in the intervention arm. The mean age was 41.6 years (SD, 12.6), mean viral load at baseline was 7.90 log10 copies/mL (SD, 1.82), and median time from symptom onset to randomization was 3 days. No differences were found in the mean reduction of viral load at day 3 (-1.41 vs -1.41 log10 copies/mL in the control and intervention arm, respectively) or at day 7 (-3.37 vs -3.44). Treatment did not reduce risk of hospitalization (7.1% control vs 5.9% intervention) nor shorten the time to complete resolution of symptoms (12 days, control vs 10 days, intervention). No relevant adverse events were reported. CONCLUSIONS: In patients with mild COVID-19, no benefit was observed with HCQ beyond the usual care.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina , Adulto , Humanos , Hidroxicloroquina/uso terapéutico , SARS-CoV-2 , Resultado del Tratamiento
5.
PLoS Pathog ; 12(8): e1005829, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27541004

RESUMEN

Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages.


Asunto(s)
Ciclina D2/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Macrófagos/inmunología , Animales , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/inmunología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Macrófagos/virología , Ratones , Proteínas de Unión al GTP Monoméricas/inmunología , Proteína 1 que Contiene Dominios SAM y HD
6.
Artículo en Inglés | MEDLINE | ID: mdl-28874382

RESUMEN

The persistence of HIV despite suppressive antiretroviral therapy is a major roadblock to HIV eradication. Current strategies focused on inducing the expression of latent HIV fail to clear the persistent reservoir, prompting the development of new approaches for killing HIV-positive cells. Recently, acitretin was proposed as a pharmacological enhancer of the innate cellular defense network that led to virus reactivation and preferential death of infected cells. We evaluated the capacity of acitretin to reactivate and/or to facilitate immune-mediated clearance of HIV-positive cells. Acitretin did not induce HIV reactivation in latently infected cell lines (J-Lat and ACH-2). We could observe only modest induction of HIV reactivation by acitretin in latently green fluorescent protein-HIV-infected Jurkat cells, comparable to suboptimal concentrations of vorinostat, a known latency-reversing agent (LRA). Acitretin induction was insignificant, however, compared to optimal concentrations of LRAs. Acitretin failed to reactivate HIV in a model of latently infected primary CD4+ T cells but induced retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) expression in infected and uninfected cells, confirming the role of acitretin as an innate immune modulator. However, this effect was not associated with selective killing of HIV-positive cells. In conclusion, acitretin-mediated stimulation of the RIG-I pathway for HIV reactivation is modest and thus may not meaningfully affect the HIV reservoir. Stimulation of the RIG-I-dependent interferon (IFN) cascade by acitretin may not significantly affect the selective destruction of latently infected HIV-positive cells.


Asunto(s)
Acitretina/farmacología , Infecciones por VIH/inmunología , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Latencia del Virus/efectos de los fármacos , Proteína 58 DEAD Box/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos
7.
J Antimicrob Chemother ; 71(2): 387-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26542306

RESUMEN

OBJECTIVES: Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). METHODS: MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS: CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. CONCLUSIONS: SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Herpesvirus Humano 1/fisiología , Macrófagos/virología , Proteínas de Unión al GTP Monoméricas/metabolismo , Piperazinas/farmacología , Piridinas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Células Cultivadas , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Proteína 1 que Contiene Dominios SAM y HD
8.
J Immunol ; 193(4): 1988-97, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015816

RESUMEN

Proliferating cells are preferentially susceptible to infection by retroviruses. Sterile α motif and HD domain-containing protein-1 (SAMHD1) is a recently described deoxynucleotide phosphohydrolase controlling the size of the intracellular deoxynucleotide triphosphate (dNTP) pool, a limiting factor for retroviral reverse transcription in noncycling cells. Proliferating (Ki67(+)) primary CD4(+) T cells or macrophages express a phosphorylated form of SAMHD1 that corresponds with susceptibility to infection in cell culture. We identified cyclin-dependent kinase (CDK) 6 as an upstream regulator of CDK2 controlling SAMHD1 phosphorylation in primary T cells and macrophages susceptible to infection by HIV-1. In turn, CDK2 was strongly linked to cell cycle progression and coordinated SAMHD1 phosphorylation and inactivation. CDK inhibitors specifically blocked HIV-1 infection at the reverse transcription step in a SAMHD1-dependent manner, reducing the intracellular dNTP pool. Our findings identify a direct relationship between control of the cell cycle by CDK6 and SAMHD1 activity, which is important for replication of lentiviruses, as well as other viruses whose replication may be regulated by intracellular dNTP availability.


Asunto(s)
Puntos de Control del Ciclo Celular/inmunología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Infecciones por VIH/inmunología , Proteínas de Unión al GTP Monoméricas/metabolismo , Bencilaminas , Linfocitos T CD4-Positivos/inmunología , Ciclo Celular/inmunología , Células Cultivadas , Ciclamas , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/genética , Células HEK293 , Infecciones por VIH/virología , VIH-1/inmunología , Compuestos Heterocíclicos/farmacología , Humanos , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Interferencia de ARN , ARN Interferente Pequeño , Receptores CXCR4/antagonistas & inhibidores , Proteína 1 que Contiene Dominios SAM y HD
9.
J Biol Chem ; 289(40): 27665-76, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25100719

RESUMEN

HIV-1 exploits multiple host proteins during infection. siRNA-based screenings have identified new proteins implicated in different pathways of the viral cycle that participate in a broad range of cellular functions. The human Mediator complex (MED) is composed of 28 elements and represents a fundamental component of the transcription machinery, interacting with the RNA polymerase II enzyme and regulating its ability to express genes. Here, we provide an evaluation of the MED activity on HIV replication. Knockdown of 9 out of 28 human MED proteins significantly impaired viral replication without affecting cell viability, including MED6, MED7, MED11, MED14, MED21, MED26, MED27, MED28, and MED30. Impairment of viral replication by MED subunits was at a post-integration step. Inhibition of early HIV transcripts was observed by siRNA-mediated knockdown of MED6, MED7, MED11, MED14, and MED28, specifically affecting the transcription of the nascent viral mRNA transactivation-responsive element. In addition, MED14 and MED30 were shown to have special relevance during the formation of unspliced viral transcripts (p < 0.0005). Knockdown of the selected MED factors compromised HIV transcription induced by Tat, with the strongest inhibitory effect shown by siMED6 and siMED14 cells. Co-immunoprecipitation experiments suggested physical interaction between MED14 and HIV-1 Tat protein. A better understanding of the mechanisms and factors controlling HIV-1 transcription is key to addressing the development of new strategies required to inhibit HIV replication or reactivate HIV-1 from the latent reservoirs.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Complejo Mediador/metabolismo , Transcripción Genética , Regulación Viral de la Expresión Génica , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , Infecciones por VIH/genética , VIH-1/metabolismo , Humanos , Complejo Mediador/genética , Unión Proteica
10.
J Immunol ; 190(9): 4736-41, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23526823

RESUMEN

Monocyte-derived macrophages (MDM) can polarize into different subsets depending on the environment and the activation signal to which they are submitted. Differentiation into macrophages allows HIV-1 strains to infect cells of the monocytic lineage. In this study, we show that culture of monocytes with a combination of IL-12 and IL-18 led to macrophage differentiation that was resistant to HIV-1 infection. In contrast, M-CSF-derived MDM were readily infected by HIV-1. When monocytes were differentiated in the presence of M-CSF and then further treated with IL-12/IL-18, cells became resistant to infection. The restriction on HIV-1 replication was not dependent on virus entry or coreceptor expression, as vesicular stomatitis virus-pseudotyped HIV-1 replication was also blocked by IL-12/IL-18. The HIV-1 restriction factor sterile α motif and HD domain-containing protein-1 (SAMHD1) was significantly overexpressed in IL-12/IL-18 MDM compared with M-CSF MDM, and degradation of SAMHD1 by RNA interference or viral-like particles carrying the lentiviral protein Vpx restored HIV-1 infectivity of IL-12/IL-18 MDM. SAMHD1 overexpression induced by IL-12/IL-18 was not dependent on IFN-γ. Thus, we conclude that IL-12 and IL-18 may contribute to the response against HIV-1 infection through the induction of restriction factors such as SAMHD1.


Asunto(s)
VIH-1/fisiología , Interleucina-12/genética , Interleucina-18/genética , Macrófagos/virología , Proteínas de Unión al GTP Monoméricas/genética , Replicación Viral/genética , Diferenciación Celular/genética , VIH-1/genética , VIH-1/metabolismo , Humanos , Interleucina-12/inmunología , Interleucina-12/metabolismo , Interleucina-18/inmunología , Interleucina-18/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/inmunología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/virología , Proteínas de Unión al GTP Monoméricas/inmunología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteína 1 que Contiene Dominios SAM y HD , Regulación hacia Arriba
11.
Antimicrob Agents Chemother ; 58(8): 4318-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24820090

RESUMEN

Genome editing using zinc finger nucleases (ZFNs) has been successfully applied to disrupt CCR5 or CXCR4 host factors and inhibit viral entry and infection. Gene therapy using ZFNs to modify the PSIP1 gene, which encodes the lens epithelium-derived growth factor (LEDGF) protein, might restrain an early step of the viral replication cycle at the integration level. ZFNs targeting the PSIP1 gene (ZFNLEDGF) were designed to specifically recognize the sequence after the integrase binding domain (IBD) of the LEDGF/p75 protein. ZFNLEDGF successfully recognized the target region of the PSIP1 gene in TZM-bl cells by heteroduplex formation and DNA sequence analysis. Gene editing induced a frameshift of the coding region and resulted in the abolishment of LEDGF expression at the mRNA and protein levels. Functional assays revealed that infection with the HIV-1 R5 BaL or X4 NL4-3 viral strains was impaired in LEDGF/p75 knockout cells regardless of entry tropism due to a blockade in HIV-1 proviral integration into the host genome. However, residual infection was detected in the LEDGF knockout cells. Indeed, LEDGF knockout restriction was overcome at a high multiplicity of infection, suggesting alternative mechanisms for HIV-1 genome integration rather than through LEDGF/p75. However, the observed residual integration was sensitive to the integrase inhibitor raltegravir. These results demonstrate that the described ZFNLEDGF effectively targets the PSIP1 gene, which is involved in the early steps of the viral replication cycle; thus, ZFNLEDGF may become a potential antiviral agent for restricting HIV-1 integration. Moreover, LEDGF knockout cells represent a potent tool for elucidating the role of HIV integration cofactors in virus replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Endonucleasas/genética , VIH-1/efectos de los fármacos , Plásmidos/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Dedos de Zinc/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Fármacos Anti-VIH/farmacología , Endonucleasas/metabolismo , Regulación de la Expresión Génica , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/genética , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Células K562 , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Sistemas de Lectura Abierta , Plásmidos/química , Ingeniería de Proteínas , Pirrolidinonas/farmacología , Raltegravir Potásico , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Integración Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
12.
Antimicrob Agents Chemother ; 58(8): 4804-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913159

RESUMEN

Sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase recently recognized as an antiviral factor that acts by depleting dNTP availability for viral reverse transcriptase (RT). SAMHD1 restriction is counteracted by the human immunodeficiency virus type 2 (HIV-2) accessory protein Vpx, which targets SAMHD1 for proteosomal degradation, resulting in an increased availability of dNTPs and consequently enhanced viral replication. Nucleoside reverse transcriptase inhibitors (NRTI), one of the most common agents used in antiretroviral therapy, compete with intracellular dNTPs as the substrate for viral RT. Consequently, SAMHD1 activity may be influencing NRTI efficacy in inhibiting viral replication. Here, a panel of different RT inhibitors was analyzed for their different antiviral efficacy depending on SAMHD1. Antiviral potency was measured for all the inhibitors in transformed cell lines and primary monocyte-derived macrophages and CD4(+) T cells infected with HIV-1 with or without Vpx. No changes in sensitivity to non-NRTI or the integrase inhibitor raltegravir were observed, but for NRTI, sensitivity significantly changed only in the case of the thymidine analogs (AZT and d4T). The addition of exogenous thymidine mimicked the change in viral sensitivity observed after Vpx-mediated SAMHD1 degradation, pointing toward a differential effect of SAMHD1 activity on thymidine. Accordingly, sensitivity to AZT was also reduced in CD4(+) T cells infected with HIV-2 compared to infection with the HIV-2ΔVpx strain. In conclusion, reduction of SAMHD1 levels significantly decreases HIV sensitivity to thymidine but not other nucleotide RT analog inhibitors in both macrophages and lymphocytes.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-2/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Estavudina/farmacología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Zidovudina/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Expresión Génica , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-2/enzimología , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/virología , Proteínas de Unión al GTP Monoméricas/genética , Cultivo Primario de Células , Proteína 1 que Contiene Dominios SAM y HD , Timidina/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Replicación Viral/efectos de los fármacos
13.
J Antimicrob Chemother ; 69(7): 1755-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24651827

RESUMEN

OBJECTIVES: To characterize a new zinc-finger nuclease (ZFN) that targets close to the sequence of the 32 bp deletion polymorphism in the CCR5 gene, and to generate cells resistant to HIV-1 strains that use CCR5. CCR5Δ32 is a naturally occurring deletion that provides genetic resistance to R5-tropic HIV-1. The specificity and efficacy of a newly identified target for CCR5 gene editing, near the CCR5Δ32 sequence (ZFNCCR5Δ32), was assessed as well as its ability to generate cells resistant to HIV infection with reduced off-target effects. METHODS: ZFNCCR5Δ32 activity was evaluated by heteroduplex formation in human K562 cells. Assessment of ZFNCCR5Δ32 specificity was analysed in silico. The yield of ZFNCCR5Δ32 in cell culture was improved by fluorescence-activated cell sorting, and the anti-HIV potency of ZFNCCR5Δ32 was measured in vitro in TZM-bl cells against HIV-1 strains. RESULTS: ZFNCCR5Δ32 effectively recognized the CCR5Δ32 region, inducing a frameshift of the CCR5 coding region that resulted in the complete absence of CCR5 expression of mRNA and of protein at the cell surface. CCR5 knockout cells were refractory to HIV-1 infection by the R5-using strain BaL. Unlike previous CCR5 ZFN studies, the new ZFN has no detectable off-target activity. CONCLUSIONS: ZFNCCR5Δ32 is a specific and efficient tool for the generation of CCR5 knockouts. Its ability to mimic the natural CCR5Δ32 phenotype in the absence of relevant off-site cutting events suggests that ZFNCCR5Δ32 might be safe in clinical research.


Asunto(s)
Desoxirribonucleasas/metabolismo , Técnicas de Inactivación de Genes/métodos , VIH-1/fisiología , Receptores CCR5/metabolismo , Receptores del VIH/metabolismo , Eliminación de Secuencia , Internalización del Virus , Línea Celular , Humanos , Receptores CCR5/genética , Receptores del VIH/genética , Especificidad por Sustrato
14.
J Antimicrob Chemother ; 69(11): 3057-60, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25063780

RESUMEN

OBJECTIVES: SAMHD1 and the CDKN1A (p21) cyclin-dependent kinase inhibitor have been postulated to mediate HIV-1 restriction in CD4+ cells. We have shown that p21 affects HIV replication through its effect on SAMHD1. Thus, we aimed at evaluating the expression of SAMHD1 and p21 in different HIV+ phenotypic groups. PATIENTS AND METHODS: We evaluated SAMHD1 and CDKN1A mRNA expression in CD4+ T cells from HIV+ individuals including elite controllers (n = 12), individuals who control HIV without the need for antiretroviral treatment, viraemic progressors (n = 10) and HIV-1 seronegative healthy donors (n = 14). Immunological variables were measured by flow cytometry. RESULTS: We show that a subset of HIV+ elite controllers with lower T cell proliferation levels (Ki67+ cells) expressed higher SAMHD1 compared with healthy donors or viraemic progressors. Conversely, there was no difference in p21 expression before or after T cell activation with a bispecific CD3/CD8 antibody. CONCLUSIONS: Our results suggest that SAMHD1 may play a role in controlling virus replication in HIV+ individuals and slow the rate of disease progression.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , VIH-1/enzimología , Proteínas de Unión al GTP Monoméricas/biosíntesis , Fenotipo , Replicación Viral/fisiología , Humanos , Antígeno Ki-67/biosíntesis , Proteína 1 que Contiene Dominios SAM y HD
15.
Cell Oncol (Dordr) ; 47(1): 189-208, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37667113

RESUMEN

PURPOSE: The lack of validated surrogate biomarkers is still an unmet clinical need in the management of early breast cancer cases that do not achieve complete pathological response after neoadjuvant chemotherapy (NACT). Here, we describe and validate the use of SAMHD1 expression as a prognostic biomarker in residual disease in vivo and in vitro. METHODS: SAMHD1 expression was evaluated in a clinical cohort of early breast cancer patients with stage II-III treated with NACT. Heterotypic 3D cultures including tumor and immune cells were used to investigate the molecular mechanisms responsible of SAMHD1 depletion through whole transcriptomic profiling, immune infiltration capacity and subsequent delineation of dysregulated immune signaling pathways. RESULTS: SAMHD1 expression was associated to increased risk of recurrence and higher Ki67 levels in post-NACT tumor biopsies of breast cancer patients with residual disease. Survival analysis showed that SAMHD1-expressing tumors presented shorter time-to-progression and overall survival than SAMHD1 negative cases, suggesting that SAMHD1 expression is a relevant prognostic factor in breast cancer. Whole-transcriptomic profiling of SAMHD1-depleted tumors identified downregulation of IL-12 signaling pathway as the molecular mechanism determining breast cancer prognosis. The reduced interleukin signaling upon SAMHD1 depletion induced changes in immune cell infiltration capacity in 3D heterotypic in vitro culture models, confirming the role of the SAMHD1 as a regulator of breast cancer prognosis through the induction of changes in immune response and tumor microenvironment. CONCLUSION: SAMHD1 expression is a novel prognostic biomarker in early breast cancer that impacts immune-mediated signaling and differentially regulates inflammatory intra-tumoral response.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Proteína 1 que Contiene Dominios SAM y HD/genética , Análisis de Supervivencia , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral
16.
Ther Adv Med Oncol ; 16: 17588359241290720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39449733

RESUMEN

Background: Human epidermal growth factor receptor 2 (HER2)-low has emerged as a potential new entity in breast cancer (BC). Data on this subset are limited, and prognostic results are controversial, evidencing the need of further data in a BC real-world cohort. Methods: Patients with HER2-negative stage I-III BC diagnosed between 2006 and 2016 were retrospectively reviewed in a single cohort from the Catalan Institute of Oncology Badalona. Demographics and clinicopathological characteristics were examined via medical charts/electronic health records. We aim to describe and compare HER2-0/HER2-low populations through Chi-square or Fisher test, and explore its prognostic impact using Kaplan-Meier curves and Cox regression models. Results: From a cohort of 1755 BC patients, 1401 invasive HER2-negative, stage I-III cases were evaluated. 87% were hormone receptor (HR)-positive versus 13% triple negative (TNBC). Overall, 43% were HER2-0 and 57% HER2-low (61% immunohistochemistry (IHC) 1+ and 39% IHC 2+). Comparing HER2-low versus HER2-0, HER2-low showed higher proportion of estrogen receptor (ER)-positive (91.6% vs 79.9%, p ⩽ 0.001) and progesterone receptor (PR)-positive (79.8% vs 68.9%, p ⩽ 0.001) cases. HER2-0 exhibited higher proportion of TNBC (20.1% vs 8.4%, p = 0.001), grade III tumors (28.8% vs 23.5%, p = 0.039), and higher Ki67 median value (26.47% vs 23.88%, p = 0.041). HER2-low was associated with longer time to distant recurrence (TTDR) compared to HER2-0 (67.8 vs 54.1 months; p = 0.015) and better BC-related survival (19.2 vs 16.3 years; p = 0.033). In the multivariable analysis, HER2-low was not an independent prognostic factor for TTDR and BC-related survival. ER expression showed a strong association with longer TTDR (Hazard Ratio: 0.425, p ⩽ 0.001) and improved BC-related survival (Hazard Ratio: 0.380, p ⩽ 0.001). PR expression was also associated with longer TTDR (Hazard Ratio: 0.496, p ⩽ 0.001), and improved BC-related survival (Hazard Ratio: 0.488, p ⩽ 0.001). Histological grade III was significantly associated with shorter TTDR (Hazard Ratio: 1.737, p = 0.002). Positive nodal status was the strongest factor correlated with worse BC-related survival (Hazard Ratio: 2.747, p ⩽ 0.001). Conclusion: HER2-low was significantly associated with HR-positive disease, whereas HER2-0 group had higher incidence of TNBC, histological grade III and higher Ki67%. Although HER2-low group was associated with longer TTDR and improved BC-related survival, these findings could be explained by the greater proportion of favorable prognostic features in this subgroup compared to HER2-0.

17.
NPJ Vaccines ; 9(1): 48, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413645

RESUMEN

Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.

18.
Nat Commun ; 15(1): 1051, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316751

RESUMEN

Here we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA+ memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.16 and BA.2.86 Omicron subvariants. Consistently, 17T2 demonstrates in vivo prophylactic and therapeutic activity against Omicron BA.1.1 infection in K18-hACE2 mice. Cryo-electron microscopy reconstruction shows that 17T2 binds the BA.1 spike with the RBD in "up" position and blocks the receptor binding motif, as other structurally similar antibodies do, including S2E12. Yet, unlike S2E12, 17T2 retains its neutralizing activity against all variants tested, probably due to a larger RBD contact area. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 as a potential candidate for future clinical interventions.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Microscopía por Crioelectrón , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
19.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514609

RESUMEN

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Cricetinae , Animales , Humanos , Ratones , Mesocricetus , Vacunas contra la COVID-19 , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/genética , Inmunización , Glicoproteínas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
20.
J Biol Chem ; 287(38): 32017-26, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22846998

RESUMEN

Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/virología , Endosomas/metabolismo , VIH-1/metabolismo , Fármacos Anti-VIH/farmacología , Anticuerpos Monoclonales/química , Bencilaminas , Técnicas de Cocultivo , Ciclamas , Relación Dosis-Respuesta a Droga , Endocitosis , Endosomas/virología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , Compuestos Heterocíclicos/farmacología , Humanos , Inmunoglobulina G/química , Leucocitos Mononucleares/citología , Internalización del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA