Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 119(1): 300-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613336

RESUMEN

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Asunto(s)
Aclimatación , Arabidopsis , Respuesta al Choque Térmico , Plantones , Arabidopsis/fisiología , Arabidopsis/genética , Plantones/fisiología , Plantones/genética , Respuesta al Choque Térmico/fisiología , Metabolismo Energético , Termotolerancia/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Orgánulos/fisiología , Orgánulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calor , Dinámicas Mitocondriales/fisiología
2.
Plant J ; 119(3): 1570-1595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761101

RESUMEN

The plant plasma membrane (PM) plays a key role in perception of environmental signals, and set-up of adaptive responses. An exhaustive and quantitative description of the whole set of lipids and proteins constituting the PM is necessary to understand how these components allow to fulfill such essential physiological functions. Here we provide by state-of-the-art approaches the first combined reference of the plant PM lipidome and proteome from Arabidopsis thaliana suspension cell culture. We identified and quantified a reproducible core set of 2165 proteins, which is by far the largest set of available data concerning this plant PM proteome. Using the same samples, combined lipidomic approaches, allowing the identification and quantification of an unprecedented repertoire of 414 molecular species of lipids showed that sterols, phospholipids, and sphingolipids are present in similar proportions in the plant PM. Within each lipid class, the precise amount of each lipid family and the relative proportion of each molecular species were further determined, allowing to establish the complete lipidome of Arabidopsis PM, and highlighting specific characteristics of the different molecular species of lipids. Results obtained point to a finely tuned adjustment of the molecular characteristics of lipids and proteins. More than a hundred proteins related to lipid metabolism, transport, or signaling have been identified and put in perspective of the lipids with which they are associated. This set of data represents an innovative resource to guide further research relative to the organization and functions of the plant PM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Lipidómica , Proteómica , Arabidopsis/metabolismo , Arabidopsis/genética , Proteómica/métodos , Membrana Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteoma/metabolismo , Esfingolípidos/metabolismo , Fosfolípidos/metabolismo
3.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498624

RESUMEN

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Azufre , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azufre/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteómica , Transcriptoma , Multiómica
4.
J Proteome Res ; 23(8): 3353-3366, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39016325

RESUMEN

Ion mobility mass spectrometry has become popular in proteomics lately, in particular because the Bruker timsTOF instruments have found significant adoption in proteomics facilities. The Bruker's implementation of the ion mobility dimension generates massive amounts of mass spectrometric data that require carefully designed software both to extract meaningful information and to perform processing tasks at reasonable speed. In a historical move, the Bruker company decided to harness the skills of the scientific software development community by releasing to the public the timsTOF data file format specification. As a proteomics facility that has been developing Free Open Source Software (FOSS) solutions since decades, we took advantage of this opportunity to implement the very first FOSS proteomics complete solution to natively read the timsTOF data, low-level process them, and explore them in an integrated quantitative proteomics software environment. We dubbed our software i2MassChroQ because it implements a (peptide)identification-(protein)inference-mass-chromatogram-quantification processing workflow. The software benchmarking results reported in this paper show that i2MassChroQ performed better than competing software on two critical characteristics: (1) feature extraction capability and (2) protein quantitative dynamic range. Altogether, i2MassChroQ yielded better quantified protein numbers, both in a technical replicate MS runs setting and in a differential protein abundance analysis setting.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Espectrometría de Masas/métodos
5.
BMC Genomics ; 25(1): 940, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375606

RESUMEN

BACKGROUND: Two strains of the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae) present a differential parasitism success on the host, Sesamia nonagrioides (Lepidoptera: Noctuidae). One is virulent on both permissive and resistant host populations, and the other only on the permissive host. This interaction provides a very interesting frame for studying virulence factors. Here, we used a combination of comparative transcriptomic and proteomic analyses to unravel the molecular basis underlying virulence differences between the strains. RESULTS: First, we report that virulence genes are mostly expressed during the pupal stage 24 h before adult emergence of the parasitoid. Especially, 55 proviral genes are up-regulated at this stage, while their expression is only expected in the host. Parasitoid gene expression in the host increases from 24 to 96 h post-parasitism, revealing the expression of 54 proviral genes at early parasitism stage and the active participation of teratocytes to the parasitism success at the late stage. Secondly, comparison between strains reveals differences in venom composition, with 12 proteins showing differential abundance. Proviral expression in the host displays a strong temporal variability, along with differential patterns between strains. Notably, a subset of proviral genes including protein-tyrosine phosphatases is specifically over-expressed in the resistant host parasitized by the less virulent strain, 24 h after parasitism. This result particularly hints at host modulation of proviral expression. Combining proteomic and transcriptomic data at various stages, we identified 8 candidate genes to support the difference in reproductive success of the two strains, one proviral and 7 venom genes, one of them being also produced within the host by the teratocytes. CONCLUSIONS: This study sheds light on the temporal expression of virulence factors of Cotesia typhae, both in the host and in the parasitoid. It also identifies potential molecular candidates driving differences in parasitism success between two strains. Together, those findings provide a path for further exploration of virulence mechanisms in parasitoid wasps, and offer insights into host-parasitoid coevolution.


Asunto(s)
Proteómica , Transcriptoma , Avispas , Animales , Avispas/patogenicidad , Avispas/genética , Virulencia/genética , Interacciones Huésped-Parásitos/genética , Perfilación de la Expresión Génica , Proteoma , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Venenos de Avispas/genética , Venenos de Avispas/metabolismo
6.
J Exp Bot ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382543

RESUMEN

Root senescence remains largely unexplored. In this study, the temporality of the morphological, metabolic, and proteomic changes occurring with root aging were investigated, providing a comprehensive picture of the root senescence program. We found novel senescence-related markers for the characterization of the developmental stage of root tissues. The rapeseed root system is unique in that it consists of the taproot and lateral roots. Our study confirms that the taproot, which transiently accumulates large quantities of starch and proteins, is specifically dedicated to nutrient storage and remobilization, while the lateral roots are mainly dedicated to nutrient uptake. Proteomic data from the taproot and lateral roots highlight the different senescence-related events that control nutrient remobilization and nutrient uptake capacities. Both the proteome and enzyme activities revealed senescence-induced proteases and nucleotide catabolic enzymes that deserve attention as they may play important roles in nutrient remobilization efficiency in rapeseed roots. Taking advantage of publicly available transcriptomic and proteomic data on senescent Arabidopsis leaves, we have highlighted new lists of senescence-related proteins specific or common to root organs and/or leaves.

7.
Genome Res ; 30(11): 1593-1604, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33060172

RESUMEN

The effect of drought on maize yield is of particular concern in the context of climate change and human population growth. However, the complexity of drought-response mechanisms makes the design of new drought-tolerant varieties a difficult task that would greatly benefit from a better understanding of the genotype-phenotype relationship. To provide novel insight into this relationship, we applied a systems genetics approach integrating high-throughput phenotypic, proteomic, and genomic data acquired from 254 maize hybrids grown under two watering conditions. Using association genetics and protein coexpression analysis, we detected more than 22,000 pQTLs across the two conditions and confidently identified 15 loci with potential pleiotropic effects on the proteome. We showed that even mild water deficit induced a profound remodeling of the proteome, which affected the structure of the protein coexpression network, and a reprogramming of the genetic control of the abundance of many proteins, including those involved in stress response. Colocalizations between pQTLs and QTLs for ecophysiological traits, found mostly in the water deficit condition, indicated that this reprogramming may also affect the phenotypic level. Finally, we identified several candidate genes that are potentially responsible for both the coexpression of stress response proteins and the variations of ecophysiological traits under water deficit. Taken together, our findings provide novel insights into the molecular mechanisms of drought tolerance and suggest some pathways for further research and breeding.


Asunto(s)
Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Proteoma/genética , Zea mays/genética , Sequías , Ambiente , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sitios de Carácter Cuantitativo , Zea mays/metabolismo
8.
Fungal Genet Biol ; 147: 103517, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434644

RESUMEN

For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/metabolismo , Fosfatos/metabolismo , Proteoma , Suelo/química , Proteínas Fúngicas/genética , Nitrógeno/metabolismo , Fosfatos/análisis , Raíces de Plantas/microbiología , Proteómica , Simbiosis/genética , Simbiosis/fisiología
9.
Plant Cell Environ ; 44(5): 1504-1521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33410508

RESUMEN

In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16°C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or protein responses differentiating them in growth-chamber conditions, which could be of interest for breeding.


Asunto(s)
Arabidopsis/metabolismo , Respuesta al Choque por Frío/fisiología , Metaboloma , Proteoma/metabolismo , Zea mays/metabolismo , Zea mays/fisiología , Frío , Genotipo , Fenotipo , Fotosíntesis , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Zea mays/genética
10.
J Exp Bot ; 72(7): 2611-2626, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33558872

RESUMEN

Pea is a legume crop producing protein-rich seeds and is increasingly in demand for human consumption and animal feed. The aim of this study was to explore the proteome of developing pea seeds at three key stages covering embryogenesis, the transition to seed-filling, and the beginning of storage-protein synthesis, and to investigate how the proteome was influenced by S deficiency and water stress, applied either separately or combined. Of the 3184 proteins quantified by shotgun proteomics, 2473 accumulated at particular stages, thus providing insights into the proteome dynamics at these stages. Differential analyses in response to the stresses and inference of a protein network using the whole proteomics dataset identified a cluster of antioxidant proteins (including a glutathione S-transferase, a methionine sulfoxide reductase, and a thioredoxin) possibly involved in maintaining redox homeostasis during early seed development and preventing cellular damage under stress conditions. Integration of the proteomics data with previously obtained transcriptomics data at the transition to seed-filling revealed the transcriptional events associated with the accumulation of the stress-regulated antioxidant proteins. This transcriptional defense response involves genes of sulfate homeostasis and assimilation, thus providing candidates for targeted studies aimed at dissecting the signaling cascade linking S metabolism to antioxidant processes in developing seeds.


Asunto(s)
Pisum sativum , Proteómica , Antioxidantes , Deshidratación , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Azufre/metabolismo
11.
Plant Physiol ; 180(2): 1198-1218, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948555

RESUMEN

Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA Glc ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild-type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilization of reserves, reactive oxygen species production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Genómica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Ciclo Celular , Desecación , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación/genética , Oxidación-Reducción , Fotosíntesis , Latencia en las Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Transducción de Señal/genética , Transcriptoma/genética
12.
Plant Physiol ; 180(3): 1709-1724, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015299

RESUMEN

Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato (Solanum lycopersicum) fruit. Quantitative data were collected for transcripts and proteins during fruit development. Clustering analysis showed smaller changes in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the coefficient of correlation decreased during fruit development and ripening, with transcript levels decreasing more than protein levels. A mathematical model with one ordinary differential equation was used to estimate translation (kt ) and degradation (kd ) rate constants for almost 2,400 detected transcript-protein pairs and was satisfactorily fitted for >1,000 pairs. The model predicted median values of ∼2 min for the translation of a protein, and a protein lifetime of ∼11 d. The constants were validated and inspected for biological relevance. Proteins involved in protein synthesis had higher kt and kd values, indicating that the protein machinery is particularly flexible. Our model also predicts that protein concentration is more strongly affected by the rate of translation than that of degradation.


Asunto(s)
Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Algoritmos , Análisis por Conglomerados , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica/métodos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Modelos Teóricos , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas , Proteolisis , Proteómica/métodos
13.
Plant Cell Environ ; 43(5): 1300-1313, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994739

RESUMEN

Seed germination is regulated by environmental factors, particularly water availability. Water deficits at the time of sowing impair the establishment of crop plants. Transcriptome and proteome profiling was used to document the responses of sunflower (Helianthus annuus) seeds to moderate water stress during germination in two hybrids that are nominally classed as drought sensitive and drought tolerant. Differences in the water stress-dependent accumulation reactive oxygen species and antioxidant enzymes activities were observed between the hybrids. A pathway-based analysis of the hybrid transcriptomes demonstrated that the water stress-dependent responses of seed metabolism were similar to those of the plant, with a decreased abundance of transcripts encoding proteins associated with metabolism and cell expansion. Moreover, germination under water stress conditions was associated with increased levels of transcripts encoding heat shock proteins. Exposure of germinating seeds to water stress specifically affected the abundance of a small number of proteins, including heat shock proteins. Taken together, these data not only identify factors that are likely to play a key role in drought tolerance during seed germination, but they also demonstrate the importance of the female parent in the transmission of water stress tolerance.


Asunto(s)
Germinación/fisiología , Helianthus/fisiología , Semillas/fisiología , Antioxidantes/metabolismo , Deshidratación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Choque Térmico/metabolismo , Helianthus/metabolismo , Peróxido de Hidrógeno/metabolismo , Redes y Vías Metabólicas , Proteínas de Plantas/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN
14.
J Exp Bot ; 71(20): 6471-6490, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32687580

RESUMEN

Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteómica , Sulfatos/metabolismo
15.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036472

RESUMEN

The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.


Asunto(s)
Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteoma , Proteómica , Arteria Pulmonar , Transducción de Señal , Biomarcadores , Células Cultivadas , Biología Computacional/métodos , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Proteómica/métodos , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo
16.
New Phytol ; 223(3): 1461-1477, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077612

RESUMEN

Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and ß-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for ß-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Autofagia , Retículo Endoplásmico/metabolismo , Lipidómica , Mutación/genética , Peroxisomas/metabolismo , Proteómica , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Modelos Biológicos , Ácido Salicílico/metabolismo
17.
New Phytol ; 219(1): 310-323, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29668080

RESUMEN

Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process.


Asunto(s)
Etilenos/metabolismo , Medicago truncatula/microbiología , Inmunidad de la Planta/fisiología , Proteínas de Plantas/metabolismo , Sinorhizobium/fisiología , Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Etilenos/farmacología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Simbiosis/efectos de los fármacos , Simbiosis/fisiología
18.
J Exp Bot ; 69(6): 1369-1385, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29281085

RESUMEN

Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.


Asunto(s)
Arabidopsis/fisiología , Autofagia/genética , Proteasas de Cisteína/genética , Arabidopsis/genética , Proteasas de Cisteína/metabolismo , Mutación , Papaína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
19.
J Chem Ecol ; 44(11): 1030-1039, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30084041

RESUMEN

Foraging parasitoids use chemical signals in host recognition and selection processes. Although, the volatiles play a relevant role in the localization by parasitoids of their hosts feeding on plants, the host identification process for acceptance occurs mainly during contact between the parasitoid and its host where host products related to feeding activities, fecal pellets and oral secretions, play a crucial role. The purpose of this study was to identify the nature of the contact kairomone(s) that mediate the acceptance for oviposition of the parasitoid Cotesia flavipes Cameron (Hymenoptera, Braconidae), which was released in Kenya in 1993 to control the invasive crambid Chilo partellus (Swinhoe). Using host and non-hosts of C. flavipes, we showed that it is mainly the oral secretions of the larvae that harbour the active compound(s) that mediate host acceptance for oviposition by C. flavipes. Using an integration of behavioral observations and biochemical approaches, the active compound of the oral secretions was identified as an α-amylase. Using synthetized α-amylases from Drosophila melanogaster (an insect model for which syntheses of active and inactive α-amylases are available), we observed that the conformation of the enzyme rather than its catalytic site as well as its substrate and its degradation product is responsible for host acceptance and oviposition mediation of C. flavipes females. The results suggest that the α-amylase from oral secretions of the caterpillar host is a good candidate for an evolutionary solution to host acceptance for oviposition in C. flavipes.


Asunto(s)
Avispas/fisiología , Zea mays/parasitología , alfa-Amilasas/metabolismo , Animales , Antenas de Artrópodos/efectos de los fármacos , Antenas de Artrópodos/fisiología , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Parásitos , Proteínas de Insectos/análisis , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Larva/fisiología , Oviposición , Espectrometría de Masas en Tándem , Avispas/crecimiento & desarrollo , Zea mays/metabolismo , alfa-Amilasas/farmacología
20.
Mycorrhiza ; 28(1): 1-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28725961

RESUMEN

In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.


Asunto(s)
Membrana Celular/genética , Medicago truncatula/genética , Medicago truncatula/microbiología , Proteínas de la Membrana/genética , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteoma , Membrana Celular/metabolismo , Glomeromycota/fisiología , Medicago truncatula/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA