Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microcirculation ; : e12875, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989907

RESUMEN

OBJECTIVE: Tortuous microvessels are characteristic of microvascular remodeling associated with numerous physiological and pathological scenarios. Three-dimensional (3D) hemodynamics in tortuous microvessels influenced by red blood cells (RBCs), however, are largely unknown, and important questions remain. Is blood viscosity influenced by vessel tortuosity? How do RBC dynamics affect wall shear stress (WSS) patterns and the near-wall cell-free layer (CFL) over a range of conditions? The objective of this work was to parameterize hemodynamic characteristics unique to a tortuous microvessel. METHODS: RBC-resolved simulations were performed using an immersed boundary method-based 3D fluid dynamics solver. A representative tortuous microvessel was selected from a stimulated angiogenic network obtained from imaging of the rat mesentery and digitally reconstructed for the simulations. The representative microvessel was a venule with a diameter of approximately 20 µm. The model assumes a constant diameter along the vessel length and does not consider variations due to endothelial cell shapes or the endothelial surface layer. RESULTS: Microvessel tortuosity was observed to increase blood apparent viscosity compared to a straight tube by up to 26%. WSS spatial variations in high curvature regions reached 23.6 dyne/cm2 over the vessel cross-section. The magnitudes of WSS and CFL thickness variations due to tortuosity were strongly influenced by shear rate and negligibly influenced by tube hematocrit levels. CONCLUSIONS: New findings from this work reveal unique tortuosity-dependent hemodynamic characteristics over a range of conditions. The results provide new thought-provoking information to better understand the contribution of tortuous vessels in physiological and pathological processes and help improve reduced-order models.

2.
Clin Exp Immunol ; 216(3): 240-251, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363980

RESUMEN

The spleen plays a role in innate and adaptive immunity, and autoimmune diseases like rheumatoid arthritis (RA). We investigated the effect of splenectomy in early and moderate stages of autoimmune arthritis in a mouse model. To induce recombinant human G1-induced arthritis (GIA), BALB/c mice were immunized intraperitoneally three times in 4-week intervals with the rhG1 antigen. Mice were splenectomized on day 7 (SPE1) or day 35 (SPE2) after the initiation of immunization; tested for clinical severity, joint radiological and histological changes, serum levels of inflammatory cytokines and autoantibodies, and rhG1-specific immune responses; and compared to those in control mice with spleen left intact. Circulating Tregs and T-helper subset ratios in the spleen and inguinal lymph nodes (LNs) were also examined using flow cytometry. The onset of severe inflammatory response was significantly delayed in SPE1 and SPE2 groups compared to control mice at early stages of GIA, which was associated with increased circulating Tregs. After the third immunization, as disease progressed, the severity scores were robustly increased in all mice. Nevertheless, in splenectomized mice, we observed reduced joint deterioration and cartilage damage, more Th2 cells in LNs, and reduced levels of pro-inflammatory cytokines and autoantibodies in their sera. Mesenteric LN cells of splenectomized mice exhibited weaker response in vitro against the rhG1 antigen compared to control mice spleen. In conclusion, splenectomy in the early stages of GIA delayed the inflammatory response, suggesting a protective effect against the development and progression of severe destructive arthritis.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Citocinas , Ratones Endogámicos BALB C , Esplenectomía , Linfocitos T Reguladores , Animales , Ratones , Linfocitos T Reguladores/inmunología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Humanos , Artritis Reumatoide/inmunología , Artritis Reumatoide/cirugía , Bazo/inmunología , Femenino , Artritis Experimental/inmunología , Ganglios Linfáticos/inmunología , Modelos Animales de Enfermedad , Articulaciones/patología , Articulaciones/inmunología , Articulaciones/cirugía , Células Th2/inmunología , Inflamación/inmunología , Proteínas Recombinantes/inmunología
3.
Bioconjug Chem ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151068

RESUMEN

In recent years, antibody conjugates have evolved as state-of-the-art options for diagnostic and therapeutic applications. During site-selective antibody conjugation, incomplete rebridging of antibody chains limits the homogeneity of conjugates and calls for the development of new rebridging agents. Herein, we report a dibromopyrazine derivative optimized to reach highly homogeneous conjugates rapidly and with high conversion on rebridging of trastuzumab, even providing a feasible route for antibody modification in acidic conditions. Furthermore, coupling a fluorescent dye and a cytotoxic drug resulted in effective antibody conjugates with excellent serum stability and in vitro selectivity, demonstrating the utility of the dibromopyrazine rebridging agent to produce on-demand future antibody conjugates for diagnostic or therapeutic applications.

4.
J Org Chem ; 89(8): 5298-5303, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38557038

RESUMEN

During the synthesis of tofisopam drug substance, an interesting diastereospecific lithium variant of Oppenauer oxidation was observed and investigated by density functional theory (DFT) calculations. The computations revealed energetic differences caused by steric differences between the diastereomers that might provide an explanation for the experimentally formed products. In addition, the trend in the measured NMR shifts was also in line with the computed values, which allowed the assignment of the absolute configuration of the diastereomers.

5.
Animals (Basel) ; 14(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891654

RESUMEN

This study aimed to characterize and quantify reasons for the removal of nurse sows and identify the removal associated with their extended lactation length (ELL). A total of 100,756 removed nurse sows within a period of 2016-2022 from 53 sow herds in the Midwest USA were analyzed. Reproductive failure was the most common removal reason (χ2 = 8748.421, p < 0.001) affecting P1, P2, and P3 nurse sows. Failure to conceive and absence of estrus were the main causes of reproductive failure (χ2 = 352.480, p < 0.001) affecting P1 and P2 nurse sows and P1 and P5 nurse sows, respectively. When P2 and P6 nurse sows had an ELL of 0-7 d, they faced a high chance (χ2 = 13.312, p = 0.021) of removal due to conception failure and failure to return to heat, respectively. When P2 and P5 nurse sows had an ELL of 8-14 d, they were highly vulnerable (χ2 = 59.847, p < 0.001) to removal due to failure to conceive and showing heat, respectively. Finally, when ELL was at 15-21 days, P4 and P5 nurse sows were more likely (χ2 = 41.751, p < 0.001) to be removed due to failure to express heat, whereas at the same time, P2 and P3 nurse sows experienced the same removal threat due to failing to conceive. These results could help producers manage nurse sow systems.

6.
ACS Omega ; 9(28): 31043-31055, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035900

RESUMEN

α-Hydroxyphosphonates and their acylated and phosphorylated derivatives may be of significant biological activity including cytotoxic effects. To extend the pool of the potentially bioactive species, new methane- and arenesulfonyloxyphosphonates were synthesized by the sulfonylation of differently substituted α-hydroxy-benzylphosphonates using methanesulfonyl chloride or p-toluenesulfonyl chloride at 25 °C in the presence of triethylamine in toluene. The new sulfonyl derivatives were obtained in 54-80% yields. In the case of the 4- or 2-methoxy substituent in the aromatic ring, surprisingly the corresponding α-chlorophosphonates were the exclusive products, whose formation was explained assuming a quinoid intermediate and supported by theoretical calculations. With a 3-methoxyphenyl substituent, the expected mesylation of the hydroxy group took place. Attempted alcoholyses of the diethyl α-methanesulfonyloxy-benzylphosphonates with different substituents in the benzyl ring at ∼140 °C in the presence of triethylamine under microwave irradiation left the P-function intact under the conditions applied, instead, the mesyloxy group was substituted by an alkoxy unit in a selective new reaction. The α-alkoxy-benzylphosphonates were isolated in 60-77% yields. While α-chloro- or α-bromo-benzylphosphonates proved to be rather inefficient in the Michaelis-Arbuzov reaction with triethyl phosphite, according to a new possibility, the α-methansulfonyloxy-benzylphosphonates underwent an efficient Arbuzov fission using the phosphite in excess at 135 °C. The arylmethylenebisphosphonates were obtained in yields of 76-81%. Bioactivity studies with the members of the phosphonate library revealed pronounced in vitro cytostatic effect of the α-hydroxy- and α-mesyloxy-3,5-di-tert-butylbenzylphosphonates on human breast carcinoma cell culture with IC50 values of 16.4 and 28.0 µM, respectively. The mesyloxy species was also cytostatic on melanoma cells (IC50 = 34.9).

7.
ACS Chem Biol ; 19(8): 1743-1756, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38991015

RESUMEN

Covalent drugs might bear electrophiles to chemically modify their targets and have the potential to target previously undruggable proteins with high potency. Covalent binding of drug-size molecules includes a noncovalent recognition provided by secondary interactions and a chemical reaction leading to covalent complex formation. Optimization of their covalent mechanism of action should involve both types of interactions. Noncovalent and covalent binding steps can be characterized by an equilibrium dissociation constant (KI) and a reaction rate constant (kinact), respectively, and they are affected by both the warhead and the scaffold of the ligand. The relative contribution of these two steps was investigated on a prototypic drug target KRASG12C, an oncogenic mutant of KRAS. We used a synthetically more accessible nonchiral core derived from ARS-1620 that was equipped with four different warheads and a previously described KRAS-specific basic side chain. Combining these structural changes, we have synthesized novel covalent KRASG12C inhibitors and tested their binding and biological effect on KRASG12C by various biophysical and biochemical assays. These data allowed us to dissect the effect of scaffold and warhead on the noncovalent and covalent binding event. Our results revealed that the atropisomeric core of ARS-1620 is not indispensable for KRASG12C inhibition, the basic side chain has little effect on either binding step, and warheads affect the covalent reactivity but not the noncovalent binding. This type of analysis helps identify structural determinants of efficient covalent inhibition and may find use in the design of covalent agents.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Unión Proteica , Mutación , Ligandos
8.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38113354

RESUMEN

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Sitios de Unión , Espectrometría de Masas en Tándem , Ligandos , Proteínas Represoras/metabolismo
9.
Commun Chem ; 7(1): 168, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085342

RESUMEN

Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRasG12D protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38125771

RESUMEN

Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories through a circulatory system containing trillions of deformable red blood cells, whose intercellular interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-modeled red blood cells to a coarsely-resolved bulk fluid domain. We further develop algorithms that: capture the dynamics at the interface of differing viscosities, maintain hematocrit within the cell-filled volume, and move the finely-resolved region and encapsulated cells while tracking an individual cancer cell. Comparison to a fully-resolved fluid-structure interaction model is presented for verification. Finally, we use the advanced APR method to simulate cancer cell transport over a mm-scale distance while maintaining a local region of RBCs, using a fraction of the computational power required to run a fully-resolved model.

11.
Proc IEEE Int Conf Clust Comput ; 2022: 230-242, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38125675

RESUMEN

The ability to track simulated cancer cells through the circulatory system, important for developing a mechanistic understanding of metastatic spread, pushes the limits of today's supercomputers by requiring the simulation of large fluid volumes at cellular-scale resolution. To overcome this challenge, we introduce a new adaptive physics refinement (APR) method that captures cellular-scale interaction across large domains and leverages a hybrid CPU-GPU approach to maximize performance. Through algorithmic advances that integrate multi-physics and multi-resolution models, we establish a finely resolved window with explicitly modeled cells coupled to a coarsely resolved bulk fluid domain. In this work we present multiple validations of the APR framework by comparing against fully resolved fluid-structure interaction methods and employ techniques, such as latency hiding and maximizing memory bandwidth, to effectively utilize heterogeneous node architectures. Collectively, these computational developments and performance optimizations provide a robust and scalable framework to enable system-level simulations of cancer cell transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA