Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 52(D1): D590-D596, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889041

RESUMEN

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Bases de Datos Genéticas , Endodesoxirribonucleasas , Sistemas CRISPR-Cas/genética , Filogenia , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/clasificación , Endodesoxirribonucleasas/genética , Enciclopedias como Asunto
2.
PLoS Biol ; 20(1): e3001523, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061668

RESUMEN

Bacteria have membrane-spanning efflux pumps to secrete toxic compounds ranging from heavy metal ions to organic chemicals, including antibiotic drugs. The overall architecture of these efflux pumps is highly conserved: with an inner membrane energy-transducing subunit coupled via an adaptor protein to an outer membrane conduit subunit that enables toxic compounds to be expelled into the environment. Here, we map the distribution of efflux pumps across bacterial lineages to show these proteins are more widespread than previously recognised. Complex phylogenetics support the concept that gene cassettes encoding the subunits for these pumps are commonly acquired by horizontal gene transfer. Using TolC as a model protein, we demonstrate that assembly of conduit subunits into the outer membrane uses the chaperone TAM to physically organise the membrane-embedded staves of the conduit subunit of the efflux pump. The characteristics of this assembly pathway have impact for the acquisition of efflux pumps across bacterial species and for the development of new antimicrobial compounds that inhibit efflux pump function.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/fisiología , Chaperonas Moleculares , Membrana Externa Bacteriana/fisiología , Transporte Biológico , Farmacorresistencia Bacteriana/fisiología , Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Filogenia
3.
Proc Natl Acad Sci U S A ; 119(27): e2116197119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35767643

RESUMEN

The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.


Asunto(s)
Bacterias , Bacteriófagos , Tracto Gastrointestinal , Membrana Mucosa , Animales , Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteínas de la Cápside/genética , Tracto Gastrointestinal/virología , Membrana Mucosa/virología , Moco , Mutación , Simbiosis
4.
J Bacteriol ; 200(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084860

RESUMEN

The ß-barrel assembly machinery (BAM) complex is the core machinery for the assembly of ß-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long ß-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive ß-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli Enteropatógena/química , Secretina/química , Sistemas de Secreción Tipo II/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Microscopía Electrónica/métodos , Modelos Moleculares , Polisacárido Liasas/metabolismo , Unión Proteica , Conformación Proteica , Sistemas de Translocación de Proteínas/química , Sistemas de Translocación de Proteínas/metabolismo , Transporte de Proteínas , Secretina/genética , Secretina/aislamiento & purificación , Sistemas de Secreción Tipo II/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismo
5.
Mol Microbiol ; 106(1): 142-156, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28752534

RESUMEN

The assembly of proteins into bacterial outer membranes is a key cellular process that we are only beginning to understand, mediated by the ß-barrel assembly machinery (BAM). Two crucial elements of that machinery are the core BAM complex and the translocation and assembly module (TAM), with each containing a member of the Omp85 superfamily of proteins: BamA in the BAM complex, TamA in the TAM. Here, we used the substrate protein FimD as a model to assess the selectivity of substrate interactions for the TAM relative to those of the BAM complex. A peptide scan revealed that TamA and BamA bind the ß-strands of FimD, and do so selectively. Chemical cross-linking and molecular dynamics are consistent with this interaction taking place between the first and last strand of the TamA barrel domain, providing the first experimental evidence of a lateral gate in TamA: a structural element implicated in membrane protein assembly. We suggest that the lateral gates in TamA and BamA provide different environments for substrates to engage, with the differences observed here beginning to address how the TAM can be more effective than the BAM complex in the folding of some substrate proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte de Proteínas/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Péptidos/metabolismo , Pliegue de Proteína , Elementos Estructurales de las Proteínas/fisiología , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Especificidad por Sustrato/fisiología
6.
Biochem J ; 473(19): 3189-204, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27462122

RESUMEN

Malaria is one of the world's most prevalent parasitic diseases, with over 200 million cases annually. Alarmingly, the spread of drug-resistant parasites threatens the effectiveness of current antimalarials and has made the development of novel therapeutic strategies a global health priority. Malaria parasites have a complicated lifecycle, involving an asymptomatic 'liver stage' and a symptomatic 'blood stage'. During the blood stage, the parasites utilise a proteolytic cascade to digest host hemoglobin, which produces free amino acids absolutely necessary for parasite growth and reproduction. The enzymes required for hemoglobin digestion are therefore attractive therapeutic targets. The final step of the cascade is catalyzed by several metalloaminopeptidases, including aminopeptidase P (APP). We developed a novel platform to examine the substrate fingerprint of APP from Plasmodium falciparum (PfAPP) and to show that it can catalyze the removal of any residue immediately prior to a proline. Further, we have determined the crystal structure of PfAPP and present the first examination of the 3D structure of this essential malarial enzyme. Together, these analyses provide insights into potential mechanisms of inhibition that could be used to develop novel antimalarial therapeutics.


Asunto(s)
Aminopeptidasas/metabolismo , Plasmodium falciparum/enzimología , Aminopeptidasas/química , Animales , Cristalografía por Rayos X , Dimerización , Escherichia coli/enzimología , Modelos Moleculares , Conformación Proteica , Proteolisis , Especificidad por Sustrato
7.
Proteins ; 83(4): 789-95, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645579

RESUMEN

New anti-malarial treatments are desperately required to face the spread of drug resistant parasites. Inhibition of metalloaminopeptidases, PfA-M1 and PfA-M17, is a validated therapeutic strategy for treatment of Plasmodium falciparum malaria. Here, we describe the crystal structures of PfA-M1 and PfA-M17 bound to chemotherapeutic agent Tosedostat. The inhibitor occupies the enzymes' putative product egress channels in addition to the substrate binding pockets; however, adopts different binding poses when bound to PfA-M1 and PfA-M17. These findings will be valuable for the continued development of selective inhibitors of PfA-M1 and PfA-M17.


Asunto(s)
Antimaláricos/química , Glicina/análogos & derivados , Ácidos Hidroxámicos/química , Plasmodium falciparum , Proteínas Protozoarias/química , Aminopeptidasas/antagonistas & inhibidores , Antimaláricos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Glicina/química , Glicina/metabolismo , Ácidos Hidroxámicos/metabolismo , Modelos Moleculares , Proteínas Protozoarias/metabolismo
8.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482354

RESUMEN

In supermarkets and chemists worldwide, consumers are faced with an array of antimicrobial domestic cleaning and personal hygiene products purporting to kill germs and keep people safe. Many of these proven active ingredients (biocides) encourage the development of antimicrobial resistance (AMR) in microbes and microbial populations, in turn increasing the likelihood of AMR infections. In order to understand and address the selective pressure towards AMR posed by the unrestricted use of biocides, it is necessary to understand which biocides are most frequently found in consumer products and the current regulatory framework that governs their use. In this research we survey the biocidal active ingredients in the major categories of cleaning and personal care products available from supermarkets and pharmacies in Australia, and comment on the regulations that dictate how these products are tested and marketed. Benzalkonium chloride and ethanol were the two most prevalent antimicrobial biocides in this study, while triclosan, which is banned in several jurisdictions, was found in a small number of products. In Australia, many antimicrobial consumer products are regulated for efficacy and safety under the Therapeutic Goods Act, but the potential to drive microbial adaptation and AMR is not considered. Overall this survey underscores the broad use and light regulation of antimicrobial biocides in products available to the general public in Australia, and provides an information resource to inform further research and stewardship efforts.

9.
Elife ; 122024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226797

RESUMEN

Outer membrane proteins (OMPs) are essential components of the outer membrane of Gram-negative bacteria. In terms of protein targeting and assembly, the current dogma holds that a 'ß-signal' imprinted in the final ß-strand of the OMP engages the ß-barrel assembly machinery (BAM) complex to initiate membrane insertion and assembly of the OMP into the outer membrane. Here, we revealed an additional rule that signals equivalent to the ß-signal are repeated in other, internal ß-strands within bacterial OMPs, by peptidomimetic and mutational analysis. The internal signal is needed to promote the efficiency of the assembly reaction of these OMPs. BamD, an essential subunit of the BAM complex, recognizes the internal signal and the ß-signal, arranging several ß-strands and partial folding for rapid OMP assembly. The internal signal-BamD ordering system is not essential for bacterial viability but is necessary to retain the integrity of the outer membrane against antibiotics and other environmental insults.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Membranas/metabolismo , Conformación Proteica en Lámina beta , Pliegue de Proteína
10.
Antibiotics (Basel) ; 12(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37370268

RESUMEN

As a nation with relatively low levels of AMR, due to both community and agricultural stewardship, as well as geographical isolation, Australia is somewhat unique. As this advantage is being eroded, this project aimed to investigate the spectrum of human behaviours that could be modified in order to slow the spread of AMR, building upon the argument that doable actions are the best-targeted and least complex to change. We conducted a workshop with a panel of diverse interdisciplinary AMR experts (from sociology, microbiology, agriculture, veterinary medicine, health and government) and identified twelve behaviours that, if undertaken by the public, would slow the spread of AMR. These were then assessed by a representative sample of the public (285 Australians) for current participation, likelihood of future participation (likelihood) and perceived benefits that could occur if undertaken (perceived impact). An impact-likelihood matrix was used to identify four priority behaviours: do not pressure your doctor for antibiotics; contact council to find out where you can safely dispose of cleaning products with antimicrobial marketing; lobby supermarkets to only sell antibiotic free meat products; and return unused antibiotics to a pharmacy. Among a multitude of behavioural options, this study also highlights the importance of tailoring doable actions to local conditions, increasing community education, and emphasizing the lack of a one-size fits all approach to tackling this global threat.

11.
Cell Rep ; 42(6): 112551, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224021

RESUMEN

To kill bacteria, bacteriophages (phages) must first bind to a receptor, triggering the release of the phage DNA into the bacterial cell. Many bacteria secrete polysaccharides that had been thought to shield bacterial cells from phage attack. We use a comprehensive genetic screen to distinguish that the capsule is not a shield but is instead a primary receptor enabling phage predation. Screening of a transposon library to select phage-resistant Klebsiella shows that the first receptor-binding event docks to saccharide epitopes in the capsule. We discover a second step of receptor binding, dictated by specific epitopes in an outer membrane protein. This additional and necessary event precedes phage DNA release to establish a productive infection. That such discrete epitopes dictate two essential binding events for phages has profound implications for understanding the evolution of phage resistance and what dictates host range, two issues critically important to translating knowledge of phage biology into phage therapies.


Asunto(s)
Bacteriófagos , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Porinas/genética , Porinas/metabolismo , Polisacáridos
12.
Microbiol Spectr ; 10(4): e0058322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35736238

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Microscopía por Crioelectrón , Humanos , Linezolid/metabolismo , Linezolid/farmacología , Linezolid/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
13.
Biochim Biophys Acta Biomembr ; 1863(9): 183587, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33639106

RESUMEN

In Gram-negative bacteria, the ß-barrel assembly machinery (BAM) complex catalyses the assembly of ß-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - ß-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential ß-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane.


Asunto(s)
Lipoproteínas/química , Fosfatidilcolinas/química , Difracción de Neutrones , Tecnicas de Microbalanza del Cristal de Cuarzo
14.
Microbiol Spectr ; 9(1): e0102321, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431721

RESUMEN

The production of capsular polysaccharides by Klebsiella pneumoniae protects the bacterial cell from harmful environmental factors such as antimicrobial compounds and infection by bacteriophages (phages). To bypass this protective barrier, some phages encode polysaccharide-degrading enzymes referred to as depolymerases to provide access to cell surface receptors. Here, we characterized the phage RAD2, which infects K. pneumoniae strains that produce the widespread, hypervirulence-associated K2-type capsular polysaccharide. Using transposon-directed insertion sequencing, we have shown that the production of capsule is an absolute requirement for efficient RAD2 infection by serving as a first-stage receptor. We have identified the depolymerase responsible for recognition and degradation of the capsule, determined that the depolymerase forms globular appendages on the phage virion tail tip, and present the cryo-electron microscopy structure of the RAD2 capsule depolymerase at 2.7-Å resolution. A putative active site for the enzyme was identified, comprising clustered negatively charged residues that could facilitate the hydrolysis of target polysaccharides. Enzymatic assays coupled with mass spectrometric analyses of digested oligosaccharide products provided further mechanistic insight into the hydrolase activity of the enzyme, which, when incubated with K. pneumoniae, removes the capsule and sensitizes the cells to serum-induced killing. Overall, these findings expand our understanding of how phages target the Klebsiella capsule for infection, providing a framework for the use of depolymerases as antivirulence agents against this medically important pathogen. IMPORTANCE Klebsiella pneumoniae is a medically important pathogen that produces a thick protective capsule that is essential for pathogenicity. Phages are natural predators of bacteria, and many encode diverse "capsule depolymerases" which specifically degrade the capsule of their hosts, an exploitable trait for potential therapies. We have determined the first structure of a depolymerase that targets the clinically relevant K2 capsule and have identified its putative active site, providing hints to its mechanism of action. We also show that Klebsiella cells treated with a recombinant form of the depolymerase are stripped of capsule, inhibiting their ability to grow in the presence of serum, demonstrating the anti-infective potential of these robust and readily producible enzymes against encapsulated bacterial pathogens such as K. pneumoniae.


Asunto(s)
Cápsulas Bacterianas/virología , Bacteriófagos/enzimología , Klebsiella pneumoniae/virología , Polisacárido Liasas/metabolismo , Proteínas Virales/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/ultraestructura , Bacteriófagos/genética , Bacteriófagos/fisiología , Microscopía por Crioelectrón , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/ultraestructura , Polisacárido Liasas/genética , Proteínas Virales/genética
15.
mSystems ; 6(3): e0024221, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34042467

RESUMEN

Antimicrobial resistance (AMR) continues to evolve as a major threat to human health, and new strategies are required for the treatment of AMR infections. Bacteriophages (phages) that kill bacterial pathogens are being identified for use in phage therapies, with the intention to apply these bactericidal viruses directly into the infection sites in bespoke phage cocktails. Despite the great unsampled phage diversity for this purpose, an issue hampering the roll out of phage therapy is the poor quality annotation of many of the phage genomes, particularly for those from infrequently sampled environmental sources. We developed a computational tool called STEP3 to use the "evolutionary features" that can be recognized in genome sequences of diverse phages. These features, when integrated into an ensemble framework, achieved a stable and robust prediction performance when benchmarked against other prediction tools using phages from diverse sources. Validation of the prediction accuracy of STEP3 was conducted with high-resolution mass spectrometry analysis of two novel phages, isolated from a watercourse in the Southern Hemisphere. STEP3 provides a robust computational approach to distinguish specific and universal features in phages to improve the quality of phage cocktails and is available for use at http://step3.erc.monash.edu/. IMPORTANCE In response to the global problem of antimicrobial resistance, there are moves to use bacteriophages (phages) as therapeutic agents. Selecting which phages will be effective therapeutics relies on interpreting features contributing to shelf-life and applicability to diagnosed infections. However, the protein components of the phage virions that dictate these properties vary so much in sequence that best estimates suggest failure to recognize up to 90% of them. We have utilized this diversity in evolutionary features as an advantage, to apply machine learning for prediction accuracy for diverse components in phage virions. We benchmark this new tool showing the accurate recognition and evaluation of phage component parts using genome sequence data of phages from undersampled environments, where the richest diversity of phage still lies.

16.
ChemMedChem ; 14(5): 527-531, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667174

RESUMEN

While the ribosome is a common target for antibiotics, challenges with crystallography can impede the development of new bioactives using structure-based drug design approaches. In this study we exploit common structural features present in linezolid-resistant forms of both methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) to redesign the antibiotic. Enabled by rapid and facile cryoEM structures, this process has identified (S)-2,2-dichloro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)acetamide (LZD-5) and (S)-2-chloro-N-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methyl) acetamide (LZD-6), which inhibit the ribosomal function and growth of linezolid-resistant MRSA and VRE. The strategy discussed highlights the potential for cryoEM to facilitate the development of novel bioactive materials.


Asunto(s)
Acetamidas/síntesis química , Acetamidas/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Linezolid/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Ribosomas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Relación Estructura-Actividad , Enterococos Resistentes a la Vancomicina/efectos de los fármacos
17.
mBio ; 8(3)2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487427

RESUMEN

An unorthodox, surprising mechanism of resistance to the antibiotic linezolid was revealed by cryo-electron microscopy (cryo-EM) in the 70S ribosomes from a clinical isolate of Staphylococcus aureus This high-resolution structural information demonstrated that a single amino acid deletion in ribosomal protein uL3 confers linezolid resistance despite being located 24 Å away from the linezolid binding pocket in the peptidyl-transferase center. The mutation induces a cascade of allosteric structural rearrangements of the rRNA that ultimately results in the alteration of the antibiotic binding site.IMPORTANCE The growing burden on human health caused by various antibiotic resistance mutations now includes prevalent Staphylococcus aureus resistance to last-line antimicrobial drugs such as linezolid and daptomycin. Structure-informed drug modification represents a frontier with respect to designing advanced clinical therapies, but success in this strategy requires rapid, facile means to shed light on the structural basis for drug resistance (D. Brown, Nat Rev Drug Discov 14:821-832, 2015, https://doi.org/10.1038/nrd4675). Here, detailed structural information demonstrates that a common mechanism is at play in linezolid resistance and provides a step toward the redesign of oxazolidinone antibiotics, a strategy that could thwart known mechanisms of linezolid resistance.


Asunto(s)
Antibacterianos/metabolismo , Linezolid/metabolismo , Ribosomas/química , Staphylococcus aureus/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Peptidil Transferasas/metabolismo , Proteína Ribosomal L3 , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
18.
Microbiologyopen ; 6(6)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29055967

RESUMEN

Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal ß-barrel domain, which requires their assembly by the ß-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal ß-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique ß-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low ß-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Helicobacter pylori/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografía por Rayos X , Helicobacter pylori/química , Helicobacter pylori/genética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína
19.
Eur J Med Chem ; 110: 43-64, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26807544

RESUMEN

Malaria remains a global health problem, and though international efforts for treatment and eradication have made some headway, the emergence of drug-resistant parasites threatens this progress. Antimalarial therapeutics acting via novel mechanisms are urgently required. Plasmodium falciparum M1 and M17 are neutral aminopeptidases which are essential for parasite growth and development. Previous work in our group has identified inhibitors capable of dual inhibition of PfA-M1 and PfA-M17, and revealed further regions within the protease S1 pockets that could be exploited in the development of ligands with improved inhibitory activity. Herein, we report the structure-based design and synthesis of novel hydroxamic acid analogues that are capable of potent inhibition of both PfA-M1 and PfA-M17. Furthermore, the developed compounds potently inhibit Pf growth in culture, including the multi-drug resistant strain Dd2. The ongoing development of dual PfA-M1/PfA-M17 inhibitors continues to be an attractive strategy for the design of novel antimalarial therapeutics.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Antimaláricos/farmacología , Ácidos Hidroxámicos/farmacología , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Antimaláricos/química , Células HEK293 , Humanos , Ácidos Hidroxámicos/química , Malaria Falciparum/tratamiento farmacológico , Modelos Moleculares , Inhibidores de Proteasas/química , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Zinc/metabolismo
20.
PLoS One ; 10(9): e0138957, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26406322

RESUMEN

The Plasmodium falciparum PfA-M1 and PfA-M17 metalloaminopeptidases are validated drug targets for the discovery of antimalarial agents. In order to identify dual inhibitors of both proteins, we developed a hierarchical virtual screening approach, followed by in vitro evaluation of the highest scoring hits. Starting from the ZINC database of purchasable compounds, sequential 3D-pharmacophore and molecular docking steps were applied to filter the virtual 'hits'. At the end of virtual screening, 12 compounds were chosen and tested against the in vitro aminopeptidase activity of both PfA-M1 and PfA-M17. Two molecules showed significant inhibitory activity (low micromolar/nanomolar range) against both proteins. Finally, the crystal structure of the most potent compound in complex with both PfA-M1 and PfA-M17 was solved, revealing the binding mode and validating our computational approach.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Antimaláricos/química , Biología Computacional/métodos , Plasmodium falciparum/enzimología , Inhibidores de Proteasas/química , Aminopeptidasas/química , Antimaláricos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Descubrimiento de Drogas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA