Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Comput Biol ; 18(6): e1010266, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35759468

RESUMEN

Cells sense their surrounding by employing intracellular signaling pathways that transmit hormonal signals from the cell membrane to the nucleus. TGF-ß/SMAD signaling encodes various cell fates, controls tissue homeostasis and is deregulated in diseases such as cancer. The pathway shows strong heterogeneity at the single-cell level, but quantitative insights into mechanisms underlying fluctuations at various time scales are still missing, partly due to inefficiency in the calibration of stochastic models that mechanistically describe signaling processes. In this work we analyze single-cell TGF-ß/SMAD signaling and show that it exhibits temporal stochastic bursts which are dose-dependent and whose number and magnitude correlate with cell migration. We propose a stochastic modeling approach to mechanistically describe these pathway fluctuations with high computational efficiency. Employing high-order numerical integration and fitting to burst statistics we enable efficient quantitative parameter estimation and discriminate models that assume noise in different reactions at the receptor level. This modeling approach suggests that stochasticity in the internalization of TGF-ß receptors into endosomes plays a key role in the observed temporal bursting. Further, the model predicts the single-cell dynamics of TGF-ß/SMAD signaling in untested conditions, e.g., successfully reflects memory effects of signaling noise and cellular sensitivity towards repeated stimulation. Taken together, our computational framework based on burst analysis, noise modeling and path computation scheme is a suitable tool for the data-based modeling of complex signaling pathways, capable of identifying the source of temporal noise.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal , Núcleo Celular/metabolismo , Endosomas/metabolismo , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
RNA ; 25(6): 685-701, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910870

RESUMEN

Eukaryotic ribosome biogenesis is a highly orchestrated process involving numerous assembly factors including ATP-dependent RNA helicases. The DEAH helicase DHX37 (Dhr1 in yeast) is activated by the ribosome biogenesis factor UTP14A to facilitate maturation of the small ribosomal subunit. We report the crystal structure of DHX37 in complex with single-stranded RNA, revealing a canonical DEAH ATPase/helicase architecture complemented by a structurally unique carboxy-terminal domain (CTD). Structural comparisons of the nucleotide-free DHX37-RNA complex with DEAH helicases bound to RNA and ATP analogs reveal conformational changes resulting in a register shift in the bound RNA, suggesting a mechanism for ATP-dependent 3'-5' RNA translocation. We further show that a conserved sequence motif in UTP14A interacts with and activates DHX37 by stimulating its ATPase activity and enhancing RNA binding. In turn, the CTD of DHX37 is required, but not sufficient, for interaction with UTP14A in vitro and is essential for ribosome biogenesis in vivo. Together, these results shed light on the mechanism of DHX37 and the function of UTP14A in controlling its recruitment and activity during ribosome biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/análogos & derivados , ARN Helicasas DEAD-box/química , Biogénesis de Organelos , ARN Helicasas/química , ARN/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Ratones , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Especificidad por Sustrato
3.
Nucleic Acids Res ; 44(20): 9803-9820, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27599843

RESUMEN

Mammalian AATF/Che-1 is essential for embryonic development, however, the underlying molecular mechanism is unclear. By immunoprecipitation of human AATF we discovered that AATF forms a salt-stable protein complex together with neuroguidin (NGDN) and NOL10, and demonstrate that the AATF-NGDN-NOL10 (ANN) complex functions in ribosome biogenesis. All three ANN complex members localize to nucleoli and display a mutual dependence with respect to protein stability. Mapping of protein-protein interaction domains revealed the importance of both the evolutionary conserved WD40 repeats in NOL10 and the UTP3/SAS10 domain in NGDN for complex formation. Functional analysis showed that the ANN complex supports nucleolar steps of 40S ribosomal subunit biosynthesis. All complex members were required for 18S rRNA maturation and their individual depletion affected the same nucleolar cleavage steps in the 5'ETS and ITS1 regions of the ribosomal RNA precursor. Collectively, we identified the ANN complex as a novel functional module supporting the nucleolar maturation of 40S ribosomal subunits. Our data help to explain the described role of AATF in cell proliferation during mouse development as well as its requirement for malignant tumor growth.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Nucléolo Celular/metabolismo , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Unión al ARN , Proteínas Represoras/química , Proteínas Represoras/genética , Ribosomas/metabolismo
5.
Oncotarget ; 7(31): 48887-48904, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27385002

RESUMEN

Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer.


Asunto(s)
Aminoácidos/química , ADN Ribosómico/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Nucléolo Celular/metabolismo , ADN Ribosómico/química , Genes Dominantes , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/metabolismo , Oncogenes , ARN Interferente Pequeño/metabolismo , Ratas , Ribosomas/metabolismo , Transducción de Señal , Transcripción Genética
6.
Mol Cell Biol ; 35(20): 3491-503, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26240280

RESUMEN

The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits.


Asunto(s)
Proteína del Factor Nuclear 45/fisiología , Proteínas del Factor Nuclear 90/fisiología , Proteínas Ribosómicas/biosíntesis , Nucléolo Celular/metabolismo , Forma del Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo
7.
Cell Rep ; 13(12): 2879-91, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711351

RESUMEN

Ribosome biogenesis is a highly complex process requiring many assisting factors. Studies in yeast have yielded comprehensive knowledge of the cellular machinery involved in this process. However, many aspects of ribosome synthesis are different in higher eukaryotes, and the global set of mammalian ribosome biogenesis factors remains unexplored. We used an imaging-based, genome-wide RNAi screen to find human proteins involved in 40S ribosomal subunit biogenesis. Our analysis identified ∼ 300 factors, many part of essential protein modules such as the small subunit (SSU) processome, the eIF3 and chaperonin complexes, and the ubiquitin-proteasome system. We demonstrate a role for the vertebrate-specific factor RBIS in ribosome synthesis, uncover a requirement for the CRL4 E3 ubiquitin ligase in nucleolar ribosome biogenesis, and reveal that intracellular glutamine synthesis supports 40S subunit production.


Asunto(s)
Genómica/métodos , Interferencia de ARN , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/biosíntesis , Glutamina/metabolismo , Células HeLa , Humanos , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA