Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(22): e2208062, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36871145

RESUMEN

This work reports for the first time a highly efficient single-crystal cesium tin triiodide (CsSnI3 ) perovskite nanowire solar cell. With a perfect lattice structure, low carrier trap density (≈5 × 1010 cm-3 ), long carrier lifetime (46.7 ns), and excellent carrier mobility (>600 cm2 V-1 s-1 ), single-crystal CsSnI3 perovskite nanowires enable a very attractive feature for flexible perovskite photovoltaics to power active micro-scale electronic devices. Using CsSnI3 single-crystal nanowire in conjunction with highly conductive wide bandgap semiconductors as front-surface-field layers, an unprecedented efficiency of 11.7% under AM 1.5G illumination is achieved. This work demonstrates the feasibility of all-inorganic tin-based perovskite solar cells via crystallinity and device-structure improvement for the high-performance, and thus paves the way for the energy supply to flexible wearable devices in the future.

2.
ChemSusChem ; 16(3): e202202061, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36469039

RESUMEN

Fully inorganic perovskite cesium lead triiodide (CsPbI3 ) has garnered much attention from researcher for photovoltaic application because of its excellent thermal stability compared with the inorganic-organic hybrid counterparts, along with the potential to serve as the top cell in tandem devices with silicon solar cell. However, the active α-phase cubic CsPbI3 spontaneously tends to transform into the non-perovskite δ-CsPbI3 when subjected to ambient condition. This work proposes an effective method to fabricate high-quality and stable α-phase cubic CsPbI3 films by introducing phosphorus pentachloride (PCl5 ) as an additive. PCl5 acts as colloidal binder for modulating crystallization dynamics of perovskites, resulting in high-quality film and a significantly suppressed phase transition. Finally, highly stable CsPbI3 perovskite solar cells can be achieved with a power conversion efficiency up to 17.85 %, and a long-term stability in N2 filled glove box.

3.
ACS Appl Mater Interfaces ; 15(30): 36594-36601, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467424

RESUMEN

Inorganic tin-lead binary perovskites have piqued the interest of researchers as effective absorbers for thermally stable solar cells. However, the nonradiative recombination originating from the surface undercoordinated Sn2+ cations and the energetic offsets between different layers cause an excessive energy loss and deteriorate the perovskite device's performance. In this study, we investigated two thioamide derivatives that differ only in the polar part connected to their common benzene ring, namely, benzenecarbothioamide and 4-fluorophenylcarbothioamide (F-TBA). These two molecules were implemented as modifiers onto the inorganic tin-lead perovskite (CsPb0.5Sn0.5I2Br) surface in the perovskite solar cells. Modifiers that carry C═S and NH2 functional groups, equipped with lone electron pairs, can autonomously associate with surface Sn2+ through coordination and electrostatic attraction mechanisms. This interaction serves effectively to passivate the surface. In addition, due to the permanent dipole moment of the intermediate layer, an interfacial dipole field appears at the PCBM/CsPb0.5Sn0.5I2Br interface, reducing the electron extraction potential barrier. Consequently, the planar solar cell with an ITO/PEDOT:PSS/CsPb0.5Sn0.5I2Br/PCBM/BCP/Ag layered structure featuring an F-TBA surface post-treatment demonstrated a noteworthy power conversion efficiency of 14.01%. Simultaneously, after being stored for 1000 h in an inert atmosphere glovebox, the non-encapsulated CsPb0.5Sn0.5I2Br solar cells managed to preserve 94% of their original efficiency.

4.
ACS Appl Mater Interfaces ; 13(42): 49907-49915, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34637278

RESUMEN

Two-dimensional (2D) tin halide perovskites have recently emerged as very promising materials for eco-friendly lead-free photovoltaic devices. However, the fine control of the bulky organic cations orderly embedding into the perovskite structure with a narrow quantum-well width distribution and favorable orientation is rather complicated. In this study, we proposed to introduce the F-substituted phenylethlammonium (PEA) cation (i.e., 4-fluorophenethylammonium FPEA) in 2D tin halide perovskite, which may mitigate phase polydispersity and crystal orientation, thus potentially increasing attainable charge-carrier mobility. A strong interlayer electrostatic attraction between electron-deficient F atoms and its adjacent phenyl rings aligns the crystal structure, working together with the validated dipole interaction. Therefore, the fluorination of organic cation leads to orderly self-assembly of solvated intermediates and promotes vertical crystal orientation. Furthermore, the interlayer electrostatic interaction serves as a supramolecular anchor to stabilize the 2D tin halide perovskite structure. Our work uncovers the effect of interlayer molecular interaction on efficiency and stability, which contributes to the development of stable and efficient low-toxicity perovskite solar cells.

5.
Research (Wash D C) ; 2021: 9845067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34355192

RESUMEN

This work reports on a compositionally graded heterojunction for photovoltaic application by cooperating fluorine-doped carbon quantum dots (FCQDs in short) into the CsPbI2.5Br0.5 inorganic perovskite layer. Using this CsPbI2.5Br0.5/FCQDs graded heterojunction in conjunction with low-temperature-processed carbon electrode, a power conversion efficiency of 13.53% for 1 cm2 all-inorganic perovskite solar cell can be achieved at AM 1.5G solar irradiation. To the best of our knowledge, this is one of the highest efficiency reported for carbon electrode based all-inorganic perovskite solar cells so far, and the first report of 1 cm2 carbon counter electrode based inorganic perovskite solar cell with PCE exceeding 13%. Moreover, the inorganic perovskite/carbon quantum dot graded heterojunction photovoltaics maintained over 90% of their initial efficiency after thermal aging at 85° for 1056 hours. This conception of constructing inorganic perovskite/FCQDs graded heterojunction offers a feasible pathway to develop efficient and stable photovoltaics for scale-up and practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA