Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957915

RESUMEN

An oxybenzone molecule in the gas phase was characterized by mass spectrometry and angle-resolved photoelectron spectroscopy, using both single and multiphoton ionization schemes. A tabletop high harmonic generation source with a monochromator was used for single-photon ionization of oxybenzone with photon energies of up to 35.7 eV. From this, vertical ionization and appearance energies, as well as energy-dependent anisotropy parameters were retrieved and compared with the results from DFT calculations. For two-photon ionization using 4.7 eV light, we found a higher appearance energy than in the extreme ultraviolet (EUV) case, highlighting the possible influence of an intermediate state on the photoionization process. We found no differences in the mass spectra when ionizing oxybenzone by single-photons between 17.2 and 35.7 eV. However, for the multiphoton ionization, the fragmentation process was found to be sensitive to the photoionization order and laser intensity. The "softest" method was found to be two-photon ionization using 4.7 eV light, which led to no measurable fragmentation up to an intensity of 5 × 1012 W cm-2.

2.
Faraday Discuss ; 236(0): 461-484, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35507329

RESUMEN

Photoemission from submicrometer droplets containing a mixture of dioctyl phthalate and dioctyl sebacate was investigated by femtosecond and nanosecond photoionization. Photoelectron spectra recorded after ionization with single 4.7 eV femtosecond or nanosecond laser pulses showed marked differences between the two cases. These differences were attributed to ionization of long-lived states which only occurred within the duration of the nanosecond pulse. The tentative assignment of the long-lived states to dioctyl phthalate triplet states is discussed. A nanosecond-femtosecond pump-probe scheme using 4.7 eV (pump) and 3.1 eV (probe) pulses was used to investigate the decay dynamics of these long-lived states. The dynamics showed an accelerated decay rate at higher dioctyl phthalate concentrations. Furthermore, the dependence of the decay dynamics on droplet size and charge was investigated. The decay of the long-lived states was found to be faster in smaller droplets as well as in neutral droplets compared with both positively and negatively charged droplets. Possible mechanisms to explain these observations and the dominance of contributions from the droplets surface are discussed.


Asunto(s)
Dietilhexil Ftalato , Rayos Láser , Luz
3.
J Phys Chem A ; 126(27): 4456-4464, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35767023

RESUMEN

It has recently been reported that reactions can occur faster in microdroplets than in extended condensed matter. The electric charge of droplets has also been suggested as a possible cause of this phenomenon. Here, we investigate the influence of electric charges on the photodegradation of single, optically trapped oleic acid aerosol droplets in the absence of other reactive species. The temporal evolution of the chemical composition and the size of droplets with charge states ranging from 0 to 104 elementary charges were retrieved from Raman spectra and elastic light scattering, respectively. No influence of the droplet charge was observed, either on the chemical composition or on the kinetics. Based on a kinetic multilayer model, we propose a reaction mechanism with the photoexcitation of oleic acid into an excited state, subsequent decay into intermediates and further photoexcitation of intermediates and their decay into nonvolatile and volatile products.

4.
Annu Rev Phys Chem ; 71: 315-334, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32075516

RESUMEN

Intriguing properties of photoemission from free, unsupported particles and droplets were predicted nearly 50 years ago, though experiments were a technical challenge. The last few decades have seen a surge of research in the field, due to advances in aerosol technology (generation, characterization, and transfer into vacuum), the development of photoelectron imaging spectrometers, and advances in vacuum ultraviolet and ultrafast light sources. Particles and droplets offer several advantages for photoemission studies. For example, photoemission spectra are dependent on the particle's size, shape, and composition, providing a wealth of information that allows for the retrieval of genuine electronic properties of condensed phase. In this review, with a focus on submicrometer-sized, dielectric particles and droplets, we explain the utility of photoemission from such systems, summarize several applications from the literature, and present some thoughts on future research directions.

5.
J Phys Chem A ; 125(24): 5326-5334, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34114470

RESUMEN

Cluster-size-resolved ultrafast dynamics of the solvated electron in neutral water clusters with n = 3 to ∼200 molecules are studied with pump-probe time-of-flight mass spectrometry after below band gap excitation. For the smallest clusters, no longer-lived (>100-200 fs) hydrated electrons were detected, indicating a minimum size of n ∼ 14 for being able to sustain hydrated electrons. Larger clusters show a systematic increase of the number of hydrated electrons per molecule on the femtosecond to picosecond time scale. We propose that with increasing cluster size the underlying dynamics is governed by more effective electron formation processes combined with less effective electron loss processes, such as ultrafast hydrogen ejection and recombination. It appears unlikely that any size dependence of the solvent relaxation dynamics would be reflected in the observed time-resolved ion yields.

6.
Phys Rev Lett ; 124(1): 013402, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976689

RESUMEN

The high surface sensitivity and controlled surface charge state of submicron sized droplets is exploited to study low-energy electron transport through liquid interfaces using photoelectron imaging. Already a few charges on a droplet are found to modify the photoelectron images significantly. For narrow escape barriers, the comparison with an electron scattering model reveals pronounced quantum effects in the form of above-barrier reflections at electron kinetic energies below about 1 eV. The observed susceptibility to the characteristics of the electron escape barrier might provide access to these properties for liquid interfaces, which are generally difficult to investigate.

7.
J Phys Chem A ; 124(39): 7959-7965, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32878434

RESUMEN

Below band gap formation of solvated electrons in neutral water clusters using pump-probe photoelectron imaging is compared with recent data for liquid water and with above band gap excitation studies in liquid and clusters. Similar relaxation times on the order of 200 fs and 1-2 ps are retrieved for below and above band gap excitation, in both clusters and liquid. The independence of the relaxation times from the generation process indicates that these times are dominated by the solvent response, which is significantly slower than the various solvated electron formation processes. The analysis of the temporal evolution of the vertical electron binding energy and the electron binding energy at half-maximum suggests a dependence of the solvation time on the binding energy.

8.
Phys Chem Chem Phys ; 20(24): 16364-16371, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29872831

RESUMEN

Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter ß as a function of cluster size. A remarkably steep decrease of ß with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

11.
Nanoscale ; 16(11): 5695-5705, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38407309

RESUMEN

Studying photoemission from free, unsupported aerosol particles is a powerful method for gaining insight into light-matter interactions at the nanoscale. We used single-shot velocity map imaging to experimentally measure kinetic energy and angular distributions of ions emitted following interaction of sub-micrometer NaCl particles with femtosecond pulses of near infrared (NIR, 800 nm) and ultraviolet (UV, 266 nm) light. We combined this with time-dependent simulations of light propagation through the particles and a rate equation approach to computationally address the origin of the observed ion emission. For both NIR and UV pulses, ion emission is caused by the formation of an under-dense nanoplasma with similar densities, although using an order of magnitude weaker UV intensities. Such conditions result in remarkably similar ion fragments with similar kinetic energies, and no obvious influence of the plasma formation mechanism (photoionization or collisional ionization). Our data suggests that Coulomb explosion does not play a significant role for ion emission, and we discuss alternative mechanisms that can lead to material ablation from under-dense nanoplasma. Finally, we show how finite size effects play an important role in photoemission through generation of spatially inhomogeneous nanoplasmas, which result in asymmetric ion emission that depends on particle size and laser wavelength. By utilizing the single-particle information available from our experiments, we show how finite size effects and inhomogeneous nanoplasma formation can be exploited to retrieve the size and orientation of individual submicrometer aerosol particles.

13.
J Phys Chem Lett ; 10(17): 4777-4782, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382737

RESUMEN

We have investigated the solvation dynamics and the genuine binding energy and photoemission anisotropy of the solvated electron in neutral water clusters with a combination of time-resolved photoelectron velocity map imaging and electron scattering simulations. The dynamics was probed with a UV probe pulse following above-band-gap excitation by an EUV pump pulse. The solvation dynamics is completed within about 2 ps. Only a single band is observed in the spectra, with no indication for isomers with distinct binding energies. Data analysis with an electron scattering model reveals a genuine binding energy in the range of 3.55-3.85 eV and a genuine anisotropy parameter in the range of 0.51-0.66 for the ground-state hydrated electron. All of these observations coincide with those for liquid bulk, which is rather unexpected for an average cluster size of 300 molecules.

14.
Chem Commun (Camb) ; 54(97): 13620-13625, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30474085

RESUMEN

Exciting discussions on the impact of quantum effects in small molecular systems took place in the historical city of Edinburgh this fall 2018 in the unique conference format of the Faraday Discussions. During this three day conference meeting close to Holyrood Park, 65 leading experts from all over the world came together to discuss the developments, advances and challenges in the wide field of quantum effects in small molecular systems, either isolated or embedded into clusters, clathrates or cold matrices. The meeting clearly reflected the importance of the accurate description, characterization and prediction of quantum effects in isolated, solvated and complexed molecular systems, while allowing the community to crystallize future perspectives and directions in the field, as well as applications in chemistry, physics, biology, environmental sciences and industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA