Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mov Disord ; 39(10): 1856-1867, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39056163

RESUMEN

BACKGROUND: Clinical trials for upcoming disease-modifying therapies of spinocerebellar ataxias (SCA), a group of rare movement disorders, lack endpoints sensitive to early disease progression, when therapeutics will be most effective. In addition, regulatory agencies emphasize the importance of biological outcomes. OBJECTIVES: READISCA, a transatlantic clinical trial readiness consortium, investigated whether advanced multimodal magnetic resonance imaging (MRI) detects pathology progression over 6 months in preataxic and early ataxic carriers of SCA mutations. METHODS: A total of 44 participants (10 SCA1, 25 SCA3, and 9 controls) prospectively underwent 3-T MR scanning at baseline and a median [interquartile range] follow-up of 6.2 [5.9-6.7] months; 44% of SCA participants were preataxic. Blinded analyses of annual changes in structural, diffusion MRI, MR spectroscopy, and the Scale for Assessment and Rating of Ataxia (SARA) were compared between groups using nonparametric testing. Sample sizes were estimated for 6-month interventional trials with 50% to 100% treatment effect size, leveraging existing large cohort data (186 SCA1, 272 SCA3) for the SARA estimate. RESULTS: Rate of change in microstructural integrity (decrease in fractional anisotropy, increase in diffusivities) in the middle cerebellar peduncle, corona radiata, and superior longitudinal fasciculus significantly differed in SCAs from controls (P < 0.005), with high effect sizes (Cohen's d = 1-2) and moderate-to-high responsiveness (|standardized response mean| = 0.6-0.9) in SCAs. SARA scores did not change, and their rate of change did not differ between groups. CONCLUSIONS: Diffusion MRI is sensitive to disease progression at very early-stage SCA1 and SCA3 and may provide a >5-fold reduction in sample sizes relative to SARA as endpoint for 6-month-long trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Progresión de la Enfermedad , Imagen por Resonancia Magnética , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos
2.
Ann Neurol ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36511514

RESUMEN

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

3.
J Neurosci ; 37(25): 5996-6006, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28536273

RESUMEN

Mutations in human ZIP14 have been linked to symptoms of the early onset of Parkinsonism and Dystonia. This phenotype is likely related to excess manganese accumulation in the CNS. The metal transporter ZIP14 (SLC39A14) is viewed primarily as a zinc transporter that is inducible via proinflammatory stimuli. In vitro evidence shows that ZIP14 can also transport manganese. To examine a role for ZIP14 in manganese homeostasis, we used Zip14 knock-out (KO) male and female mice to conduct comparative metabolic, imaging, and functional studies. Manganese accumulation was fourfold to fivefold higher in brains of Zip14 KO mice compared with young adult wild-type mice. There was less accumulation of subcutaneously administered 54Mn in the liver, gallbladder, and gastrointestinal tract of the KO mice, suggesting that manganese elimination is impaired with Zip14 ablation. Impaired elimination creates the opportunity for atypical manganese accumulation in tissues, including the brain. The intensity of MR images from brains of the Zip14 KO mice is indicative of major manganese accumulation. In agreement with excessive manganese accumulation was the impaired motor function observed in the Zip14 KO mice. These results also demonstrate that ZIP14 is not essential for manganese uptake by the brain. Nevertheless, the upregulation of signatures of brain injury observed in the Zip14 KO mice demonstrates that normal ZIP14 function is an essential factor required to prevent manganese-linked neurodegeneration.SIGNIFICANCE STATEMENT Manganese is an essential micronutrient. When acquired in excess, manganese accumulates in tissues of the CNS and is associated with neurodegenerative disease, particularly Parkinson-like syndrome and dystonia. Some members of the ZIP metal transporter family transport manganese. Using mutant mice deficient in the ZIP14 metal transporter, we have discovered that ZIP14 is essential for manganese elimination via the gastrointestinal tract, and a lack of ZIP14 results in manganese accumulation in critical tissues such as the brain, as measured by MRI, and produces signatures of brain injury and impaired motor function. Humans with altered ZIP14 function would lack this gatekeeper function of ZIP14 and therefore would be prone to manganese-related neurological diseases.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Intoxicación por Manganeso/genética , Intoxicación por Manganeso/metabolismo , Manganeso/metabolismo , Actividad Motora/genética , Animales , Química Encefálica/genética , Femenino , Motilidad Gastrointestinal/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Tisular , Zinc/metabolismo , Zinc/farmacología
4.
J Parkinsons Dis ; 11(1): 283-297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33216042

RESUMEN

BACKGROUND: Some individuals with Parkinson's disease (PD) experience working memory and inhibitory difficulties, others learning and memory difficulties, while some only minimal to no cognitive deficits for many years. OBJECTIVE: To statistically derive PD executive and memory phenotypes, and compare PD phenotypes on disease and demographic variables, vascular risk factors, and specific neuroimaging variables with known associations to executive and memory function relative to non-PD peers. METHODS: Non-demented individuals with PD (n = 116) and non-PD peers (n = 62) were recruited to complete neuropsychology measures, blood draw, and structural magnetic resonance imaging. Tests representing the cognitive domains of interest (4 executive function, 3 memory) were included in a k-means cluster analysis comprised of the PD participants. Resulting clusters were compared demographic and disease-related variables, vascular risk markers, gray/white regions of interest, and white matter connectivity between known regions involved in executive and memory functions (dorsolateral prefrontal cortices to caudate nuclei; entorhinal cortices to hippocampi). RESULTS: Clusters showed: 1) PD Executive, n = 25; 2) PD Memory, n = 35; 3) PD Cognitively Well; n = 56. Even after disease variable corrections, PD Executive had less subcortical gray matter, white matter, and fewer bilateral dorsolateral-prefrontal cortex to caudate nucleus connections; PD Memory showed bilaterally reduced entorhinal-hippocampal connections. PD Cognitively Well showed only reduced putamen volume and right entorhinal cortex to hippocampi connections relative to non-PD peers. Groups did not statistically differ on cortical integrity measures or cerebrovascular disease markers. CONCLUSION: PD cognitive phenotypes showed different structural gray and white matter patterns. We discuss data relative to phenotype demographics, cognitive patterns, and structural brain profiles.


Asunto(s)
Corteza Cerebral/patología , Disfunción Cognitiva/fisiopatología , Función Ejecutiva/fisiología , Sustancia Gris/patología , Trastornos de la Memoria/fisiopatología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Sustancia Blanca/patología , Anciano , Corteza Cerebral/diagnóstico por imagen , Análisis por Conglomerados , Disfunción Cognitiva/etiología , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/clasificación , Enfermedad de Parkinson/complicaciones , Fenotipo , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA