Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 19(10): 1221-1229, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175767

RESUMEN

While spatial proteomics by fluorescence imaging has quickly become an essential discovery tool for researchers, fast and scalable methods to classify and embed single-cell protein distributions in such images are lacking. Here, we present the design and analysis of the results from the competition Human Protein Atlas - Single-Cell Classification hosted on the Kaggle platform. This represents a crowd-sourced competition to develop machine learning models trained on limited annotations to label single-cell protein patterns in fluorescent images. The particular challenges of this competition include class imbalance, weak labels and multi-label classification, prompting competitors to apply a wide range of approaches in their solutions. The winning models serve as the first subcellular omics tools that can annotate single-cell locations, extract single-cell features and capture cellular dynamics.


Asunto(s)
Aprendizaje Automático , Proteínas , Humanos , Proteínas/análisis , Proteómica
2.
J Opt Soc Am A Opt Image Sci Vis ; 32(11): 2136-47, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26560928

RESUMEN

Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA