RESUMEN
Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.
Asunto(s)
Relación Dosis-Respuesta a Droga , Oxadiazoles , Prostaglandina-E Sintasas , Prostaglandina-E Sintasas/antagonistas & inhibidores , Prostaglandina-E Sintasas/metabolismo , Humanos , Relación Estructura-Actividad , Estructura Molecular , Oxadiazoles/química , Oxadiazoles/farmacología , Oxadiazoles/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Microsomas/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis químicaRESUMEN
Botulinum neurotoxins (BoNT) inhibit neuroexocytosis, leading to the potentially lethal disease botulism. BoNT serotype A is responsible for most human botulism cases, and there are no approved therapeutics to treat already intoxicated patients. A growing body of research has demonstrated that BoNT/A can escape into the central nervous system, and therefore, identification of BoNT/A inhibitors that can penetrate BBB and neutralize the toxin within intoxicated neurons would be important. We previously identified an FDA-approved, orally bioavailable compound, KX2-391 (Tirbanibulin) that inhibits BoNT/A in motor neuron assays. Recently, a structural analog of KX2-391, KX2-361, has been shown to exhibit good oral bioavailability and cross BBB with high efficiency in mouse experiments. Therefore, in this work, we evaluated the inhibitory effects of KX2-361 against BoNT/A. Toward this goal, we first evaluated the compound for its effects on cell viability in PC12 cells, via MTT assay, and in mouse embryonic stem cell (mESC)-derived motor neurons, with imaging-based assays. Following, we tested KX2-361 in mESC-derived motor neurons intoxicated with BoNT/A holotoxin, and the compound exhibited activity against the toxin in both pre- and post-intoxication conditions. Excitingly, KX2-361 also inhibited BoNT/A enzymatic component (light chain; LC) in PC12 cells transfected with BoNT/A LC. Furthermore, our molecular docking analyses suggested that KX2-361 can directly bind to BoNT/A LC. Medicinal chemistry approaches to develop structural analogs of KX2-361 to increase its efficacy against BoNT/A may provide a critical lead compound with BBB penetration capacity for drug development efforts against BoNT/A intoxication.
Asunto(s)
Toxinas Botulínicas Tipo A , Proteína 25 Asociada a Sinaptosomas , Animales , Toxinas Botulínicas Tipo A/farmacología , Proteína 25 Asociada a Sinaptosomas/metabolismo , Ratas , Células PC12 , Supervivencia Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Humanos , RatonesRESUMEN
Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.
Asunto(s)
Antagonistas de Leucotrieno/farmacología , Leucotrienos , Nanopartículas/química , Animales , Femenino , Voluntarios Sanos , Humanos , Leucotrienos/biosíntesis , Leucotrienos/metabolismo , Masculino , RatonesRESUMEN
A series of novel piperazine urea derivatives with thiadiazole moieties were designed, synthesized, and investigated for their inhibition potential against human fatty acid amide hydrolase (hFAAH). The urea derivatives possessing p-chlorophenylthiadiazole and benzylpiperazine fragments (19-22) were effective inhibitors of hFAAH. Notably, compounds with 4-chlorobenzyl (19) and 4-fluorobenzyl (20) tails at the piperazine side were identified as the most active inhibitors with IC50 values of 0.13 and 0.22 µM, respectively. The preincubation test of 19 was in agreement with the irreversible binding mechanism. Molecular docking was performed to explore the potential binding interactions with key amino acid residues at the FAAH active site. These newly identified inhibitors could serve as leads for the further development of potent and selective FAAH inhibitors for FAAH-associated diseases.
Asunto(s)
Tiadiazoles , Urea , Amidohidrolasas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Piperazinas/química , Piperazinas/farmacología , Relación Estructura-Actividad , Tiadiazoles/farmacología , Urea/farmacologíaRESUMEN
Microsomal prostaglandin E2 synthase-1 (mPGES-1), 5-lipoxygenase (5-LO) and 5- lipoxygenase-activating protein (FLAP) are key for biosynthesis of proinflammatory lipid mediators and pharmacologically relevant drug targets. In the present study, we made an attempt to explore the role of small heteroaromatic fragments on the 4,5-diarylisoxazol-3-carboxylic acid scaffold, which are selected to interact with focused regions in the active sites of mPGES-1, 5-LO and FLAP. We report that the simple structural variations on the benzyloxyaryl side-arm of the scaffold significantly influence the selectivity against mPGES-1, 5-LO and FLAP, enabling to produce multi-target inhibitors of these protein targets, exemplified by compound 18 (IC50 mPGES-1 = 0.16 µM; IC50 5-LO = 0.39 µM) with in vivo efficacy in animal model of inflammation. The computationally modeled binding structures of these new inhibitors for three targets provide clues for rational design of modified structures as multi-target inhibitors. In conclusion, the simple synthetic procedure, and the possibility of enhancing the potency of this class of inhibitors through structural modifications pave the way for further development of new multi-target inhibitors against mPGES-1, 5-LO and FLAP, with potential application as anti-inflammatory agents.
Asunto(s)
Androstenoles/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Ácidos Carboxílicos/farmacología , Inhibidores Enzimáticos/farmacología , Prostaglandina-E Sintasas/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Androstenoles/síntesis química , Androstenoles/química , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Estructura Molecular , Prostaglandina-E Sintasas/metabolismo , Relación Estructura-Actividad , Adulto JovenRESUMEN
Leukotrienes (LTs) are proinflammatory mediators derived from arachidonic acid (AA), which play significant roles in inflammatory diseases. The 5-lipoxygenase-activating protein (FLAP) is an integral membrane protein, which is essential for the initial step in LT biosynthesis. The aim of this study was to discover novel and chemically diverse FLAP inhibitors for treatment of inflammatory diseases requiring anti-LT therapy. Both ligand- and structure-based approaches were applied to explain the activities of known FLAP inhibitors in relation to their predicted binding modes. We gained valuable insights into the binding modes of the inhibitors by molecular modeling and generated a multistep virtual screening (VS) workflow in which 6.2 million compounds were virtually screened, and the molecular hypotheses were validated by testing VS-hit compounds biologically. The most potent hit compounds showed significant inhibition of FLAP-dependent cellular LT biosynthesis with IC50 values in the range from 0.13 to 0.87 µM. Collectively, this study provided novel bioactive chemotypes with potential for further development as effective anti-inflammatory drugs.
Asunto(s)
Leucotrienos , Inhibidores de la Lipooxigenasa , Proteínas Activadoras de la 5-Lipooxigenasa , Antiinflamatorios , Inhibidores de la Lipooxigenasa/farmacología , Modelos MolecularesRESUMEN
We describe the synthesis of a series of 2-arylbenzimidazole derivatives bearing sulfonamide functionality (4a-d, 7a-c and 10) as well as hydroxamic acid (15a-b), carboxylic acid (16a-b), carboxamide (17a-b) and boronic acid (22a-b and 26) functionalities, which act as human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors. The newly synthesized benzimidazole derivatives were evaluated against 4 physiologically relevant CA isoforms (hCA I, II, IX, and XII), and especially the sulfonamide-containing benzimidazoles demonstrated intriguing inhibitory activity against tumor associated CA IX and XII with KI values in the range of 5.2-29.3 nM and 9.9-41.7 nM, respectively. Notably, compound 4c was the most potent and selective CA IX (KI = 6.6 nM) and XII (KI = 9.9 nM) inhibitor with a significant selectivity ratio over cytosolic CA I and II isoforms in the range of 3.4-25.2. In addition, compounds having hydroxamic acid (15a-b) or carboxylic acid (16a-b) functionalities resulted in greater selectivity ratios for CA IX/XII over CAI/II in the range of 4.1-121.5 although with KI values in lower micromolar potency (KIs = 0.36-0.85 µM for CA IX/XII).
Asunto(s)
Antígenos de Neoplasias/efectos de los fármacos , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Anhidrasa Carbónica IX/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/efectos de los fármacos , Humanos , Análisis Espectral/métodosRESUMEN
BACKGROUND: Dual inhibitors of the 5-lipoxygenase-activating protein (FLAP) and the microsomal prostaglandin E2 synthase-1 (mPGES-1) may exert better anti-inflammatory efficacy and lower risks of adverse effects versus non-steroidal anti-inflammatory drugs. Despite these advantages, many dual FLAP/mPGES-1 inhibitors are acidic lipophilic molecules with low solubility and strong tendency for plasma protein binding that limit their bioavailability and bioactivity. Here, we present the encapsulation of the dual FLAP/mPGES-1 inhibitor BRP-187 into the biocompatible polymers acetalated dextran (Acdex) and poly(lactic-co-glycolic acid) (PLGA) via nanoprecipitation. RESULTS: The nanoparticles containing BRP-187 were prepared by the nanoprecipitation method and analyzed by dynamic light scattering regarding their hydrodynamic diameter, by scanning electron microscopy for morphology properties, and by UV-VIS spectroscopy for determination of the encapsulation efficiency of the drug. Moreover, we designed fluorescent BRP-187 particles, which showed high cellular uptake by leukocytes, as analyzed by flow cytometry. Finally, BRP-187 nanoparticles were tested in human polymorphonuclear leukocytes and macrophages to determine drug uptake, cytotoxicity, and efficiency to inhibit FLAP and mPGES-1. CONCLUSION: Our results demonstrate that encapsulation of BRP-187 into Acdex and PLGA is feasible, and both PLGA- and Acdex-based particles loaded with BRP-187 are more efficient in suppressing 5-lipoxygenase product formation and prostaglandin E2 biosynthesis in intact cells as compared to the free compound, particularly after prolonged preincubation periods.
Asunto(s)
Dextranos/química , Isoxazoles/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Quinolinas/química , Adulto , Antiinflamatorios , Células Cultivadas , Dinoprostona/metabolismo , Composición de Medicamentos , Colorantes Fluorescentes/química , Humanos , Isoxazoles/farmacología , Neutrófilos/efectos de los fármacos , Quinolinas/farmacologíaRESUMEN
A novel flow-based approach for the preparation of benzimidazol-2-one (1) scaffold by the 1,1'-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of o-phenylenediamine (2) is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of N-(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program.
Asunto(s)
Bencimidazoles/química , Técnicas de Química Sintética , Diseño de Fármacos , Bencimidazoles/síntesis química , Modelos Teóricos , Estructura MolecularRESUMEN
In our endeavour towards the development of effective anticancer therapeutics, a novel series of isoxazole-piperazine hybrids were synthesized and evaluated for their cytotoxic activities against human liver (Huh7 and Mahlavu) and breast (MCF-7) cancer cell lines. Within series, compounds 5l-o showed the most potent cytotoxicity on all cell lines with IC50 values in the range of 0.3-3.7 µM. To explore the mechanistic aspects fundamental to the observed activity, further biological studies with 5m and 5o in liver cancer cells were carried out. We have demonstrated that 5m and 5o induce oxidative stress in PTEN adequate Huh7 and PTEN deficient Mahlavu human liver cancer cells leading to apoptosis and cell cycle arrest at different phases. Further analysis of the proteins involved in apoptosis and cell cycle revealed that 5m and 5o caused an inhibition of cell survival pathway through Akt hyperphosphorylation and apoptosis and cell cycle arrest through p53 protein activation.
Asunto(s)
Antineoplásicos/farmacología , Isoxazoles/farmacología , Piperazinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Piperazina , Piperazinas/química , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
In this study, we synthesized a series of trans-indole-3-acrylamide derivatives (3a-k) and investigated their activity for inhibition of cell proliferation against five human cancer cell lines (HeLa, MCF7, MDA-MB-231, Raji and HL-60) by MTT assay. Compound 3e showed significant antiproliferative activity against both the Raji and HL-60 cell lines with IC50 values of 9.5 and 5.1 µM, respectively. Compound 3e also exhibited moderate inhibitory activity on tubulin polymerization (IC50=17 µM). Flow cytometric analysis of cultured cells treated with 3e also demonstrated that the compound caused cell cycle arrest at the G2/M phase in HL-60 and HeLa cells. Moreover, 3e, the most active compound, caused an apoptotic cell death through the activation of caspase-3. Docking simulations suggested that 3e binds to the colchicine site of tubulin.
Asunto(s)
Acrilamida/química , Acrilamidas/química , Acrilamidas/farmacología , Indoles/química , Multimerización de Proteína/efectos de los fármacos , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Células HeLa , Humanos , Indoles/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismoRESUMEN
Trastuzumab emtansine (T-DM1) was the first and one of the most successful antibody-drug conjugates (ADC) approved for treating refractory HER2-positive breast cancer. Despite its initial clinical efficacy, resistance is unfortunately common, necessitating approaches to improve response. Here, we found that in sensitive cells, T-DM1 induced spindle assembly checkpoint (SAC)-dependent immunogenic cell death (ICD), an immune-priming form of cell death. The payload of T-DM1 mediated ICD by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which were lost in resistance. Accordingly, ICD-related gene signatures in pretreatment samples correlated with clinical response to T-DM1-containing therapy, and increased infiltration of antitumor CD8+ T cells in posttreatment samples was correlated with better T-DM1 response. Transforming acidic coiled-coil containing 3 (TACC3) was overexpressed in T-DM1-resistant cells, and T-DM1 responsive patients had reduced TACC3 protein expression whereas nonresponders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacologic inhibition of TACC3 restored T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition in vivo elicited ICD in a vaccination assay and potentiated the antitumor efficacy of T-DM1 by inducing dendritic cell maturation and enhancing intratumoral infiltration of cytotoxic T cells. Together, these results illustrate that ICD is a key mechanism of action of T-DM1 that is lost in resistance and that targeting TACC3 can restore T-DM1-mediated ICD and overcome resistance. SIGNIFICANCE: Loss of induction of immunogenic cell death in response to T-DM1 leads to resistance that can be overcome by targeting TACC3, providing an attractive strategy to improve the efficacy of T-DM1.
Asunto(s)
Ado-Trastuzumab Emtansina , Neoplasias de la Mama , Muerte Celular Inmunogénica , Proteínas Asociadas a Microtúbulos , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Muerte Celular Inmunogénica/efectos de los fármacos , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/farmacología , Ado-Trastuzumab Emtansina/uso terapéutico , Animales , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Resistencia a Antineoplásicos/inmunología , Resistencia a Antineoplásicos/efectos de los fármacos , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Linfocitos T CD8-positivos/inmunologíaRESUMEN
Inhibition of soluble epoxide hydrolase (sEH) is indicated as a new therapeutic modality against a variety of inflammatory diseases, including metabolic, renal, and cardiovascular disorders. In our ongoing research on sEH inhibitors, we synthesized novel benzoxazolone-5-urea analogues with highly potent sEH inhibitory properties inspired by the crystallographic fragment scaffolds incorporating a single H-bond donor/acceptor pair. The tractable SAR results indicated that the aryl or benzyl fragments flanking the benzoxazolone-urea scaffold conferred potent sEH inhibition, and compounds 31-39 inhibited the sEH activity with IC50 values in the range of 0.39-570 nM. Docking studies and molecular dynamics simulations with the most potent analogue 33 provided valuable insights into potential binding interactions of the inhibitor in the sEH binding region. In conclusion, benzoxazolone-5-ureas furnished with benzyl groups on the urea function can be regarded as novel lead structures, which allow the development of advanced analogues with enhanced properties against sEH.
RESUMEN
5-Lipoxygenase-activating protein (FLAP) is a regulator of cellular leukotriene biosynthesis, which governs the transfer of arachidonic acid (AA) to 5-lipoxygenase for efficient metabolism. Here, the synthesis and FLAP-antagonistic potential of fast synthetically accessible 1,2,4-triazole derivatives based on a previously discovered virtual screening hit compound is described. Our findings reveal that simple structural variations on 4,5-diaryl moieties and the 3-thioether side chain of the 1,2,4-triazole scaffold markedly influence the inhibitory potential, highlighting the significant chemical features necessary for FLAP antagonism. Comprehensive metabololipidomics analysis in activated FLAP-expressing human innate immune cells and human whole blood showed that the most potent analogue 6x selectively suppressed leukotriene B4 formation evoked by bacterial exotoxins without affecting other branches of the AA pathway. Taken together, the 1,2,4-triazole scaffold is a novel chemical platform for the development of more potent FLAP antagonists, which warrants further exploration for their potential as a new class of anti-inflammatory agents.
RESUMEN
Immunogenic cell death (ICD), an immune-priming form of cell death, has been shown to be induced by several different anti-cancer therapies. Despite being the first and one of the most successful antibody-drug conjugates (ADCs) approved for refractory HER2-positive breast cancer, little is known if response and resistance to trastuzumab emtansine (T-DM1) involves ICD modulation that can be leveraged to enhance T-DM1 response. Here, we report that T-DM1 induces spindle assembly checkpoint (SAC)-dependent ICD in sensitive cells by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which are lost in resistance. Accordingly, an ICD-related gene signature correlates with clinical response to T-DM1-containing therapy. We found that transforming acidic coiled-coil containing 3 (TACC3) is overexpressed in T-DM1 resistant cells, and that T-DM1 responsive patients have reduced TACC3 protein while the non-responders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacological inhibition of TACC3 revives T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition elicits ICD in vivo shown by vaccination assay, and it potentiates T-DM1 by inducing dendritic cell (DC) maturation and enhancing infiltration of cytotoxic T cells in the human HER2-overexpressing MMTV.f.huHER2#5 (Fo5) transgenic model. Together, our results show that ICD is a key mechanism of action of T-DM1 which is lost in resistance, and that targeting TACC3 restores T-DM1-mediated ICD and overcomes resistance.
RESUMEN
Centrosome amplification (CA) is a hallmark of cancer that is strongly associated with highly aggressive disease and worse clinical outcome. Clustering extra centrosomes is a major coping mechanism required for faithful mitosis of cancer cells with CA that would otherwise undergo mitotic catastrophe and cell death. However, its underlying molecular mechanisms have not been fully described. Furthermore, little is known about the processes and players triggering aggressiveness of cells with CA beyond mitosis. Here, we identified Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) to be overexpressed in tumors with CA, and its high expression is associated with dramatically worse clinical outcome. We demonstrated, for the first time, that TACC3 forms distinct functional interactomes regulating different processes in mitosis and interphase to ensure proliferation and survival of cancer cells with CA. Mitotic TACC3 interacts with the Kinesin Family Member C1 (KIFC1) to cluster extra centrosomes for mitotic progression, and inhibition of this interaction leads to mitotic cell death via multipolar spindle formation. Interphase TACC3 interacts with the nucleosome remodeling and deacetylase (NuRD) complex (HDAC2 and MBD2) in nucleus to inhibit the expression of key tumor suppressors (e.g., p21, p16 and APAF1) driving G1/S progression, and its inhibition blocks these interactions and causes p53-independent G1 arrest and apoptosis. Notably, inducing CA by p53 loss/mutation increases the expression of TACC3 and KIFC1 via FOXM1 and renders cancer cells highly sensitive to TACC3 inhibition. Targeting TACC3 by guide RNAs or small molecule inhibitors strongly inhibits growth of organoids and breast cancer cell line- and patient-derived xenografts with CA by induction of multipolar spindles, mitotic and G1 arrest. Altogether, our results show that TACC3 is a multifunctional driver of highly aggressive breast tumors with CA and that targeting TACC3 is a promising approach to tackle this disease.
Asunto(s)
Neoplasias de la Mama , Huso Acromático , Humanos , Femenino , Huso Acromático/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias de la Mama/patología , Proteína p53 Supresora de Tumor/metabolismo , Centrosoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismoRESUMEN
Pharmacological suppression of leukotriene biosynthesis by 5-lipoxygenase (5-LO)-activating protein (FLAP) inhibitors is a promising strategy to intervene with inflammatory, allergic and cardiovascular diseases. Virtual screening targeting FLAP based on a combined ligand- and structure-based pharmacophore model led to the identification of 1-(2-chlorobenzyl)-2-(1-(4-isobutylphenyl)ethyl)-1H-benzimidazole (7) as developable candidate. Compound 7 potently suppressed leukotriene formation in intact neutrophils (IC(50)=0.31 µM) but essentially failed to directly inhibit 5-LO suggesting that interaction with FLAP causes inhibition of leukotriene synthesis. For structural optimization, a series of 46 benzimidazole-based derivatives of 7 were synthesized leading to more potent analogues (70-72, 82) with IC(50)=0.12-0.19 µM in intact neutrophils. Together, our results disclose the benzimidazole scaffold bearing an ibuprofen fingerprint as a new chemotype for further development of anti-leukotriene agents.
Asunto(s)
Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Bencimidazoles/análisis , Bencimidazoles/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Leucotrienos/biosíntesis , Bencimidazoles/síntesis química , Bencimidazoles/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Relación Estructura-ActividadRESUMEN
INTRODUCTION: The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED: This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION: Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].