Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cryobiology ; 98: 139-145, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33301776

RESUMEN

Buffalo is an important farm animal species in South and South-east Asian countries. Cryopreservation allows long-term storage of somatic cells, which can be made available to research communities. This study aimed to 1) establish and cryopreserve somatic cells from elite buffaloes, and 2) share stored somatic cells and their associated data with researchers. To achieve these targets, somatic cells were established successfully from tail-skin biopsies of 17 buffaloes. The informative data such as buffalo details (breed, date of birth, sex, and age at the time of tissue biopsy collection, and production traits), the number of cryovials stored, and freezing dates were recorded in an electronic file and a printed inventory record. The established somatic cells were flat, spindle-shaped morphology, and expressed vimentin (a fibroblast-like cell type marker) and the negative expression of cytokeratin-18 (an epithelial cell type marker). Altogether, we cryopreserved 970 cryovials (0.1 million cells per vial) from two buffalo breeds, namely Murrah and Nili-Ravi (at least 45 cryovials per animal), for cryobanking. Somatic cell nuclear transfer (SCNT) experiments demonstrated the utility of cryopreserved cells to produce cloned buffaloes. Importantly, these cryopreserved somatic cells are made available to scientific communities. This study encourages the cryopreservation of somatic cells of elite farm animals for their utilization in cell-based research.


Asunto(s)
Búfalos , Criopreservación , Animales , Animales Domésticos , Criopreservación/métodos , Técnicas de Transferencia Nuclear , Proyectos Piloto
2.
Cell Reprogram ; 25(3): 121-127, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042654

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and somatic cell nuclear transfer (SCNT) have been used to produce genome-edited farm animal species for improved production and health traits; however, these tools are rarely used in the buffalo and can play a pivotal role in milk and meat production in tropical and subtropical countries. In this study, we aimed to produce myostatin (MSTN) gene-edited embryos of the Murrah buffalo using the CRISPR/Cas9 system and SCNT. For this, fibroblast cells were electroporated with sgRNAs carrying all-in-one CRISPR/Cas9 plasmids targeting the first exon of the MSTN gene. Following puromycin selection, single-cell clonal populations were established and screened using the TA cloning and Sanger sequencing methods. Of eight single-cell clonal populations, one with a monoallelic and another with a biallelic heterozygous gene editing event were identified. These two gene-edited clonal cell populations were successfully used to produce blastocyst-stage embryos using the handmade cloning method. This work establishes the technical foundation for generation of genome-edited cloned embryos in the buffalo.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Técnicas de Transferencia Nuclear/veterinaria , Clonación de Organismos , Blastocisto
3.
Curr Stem Cell Res Ther ; 17(3): 252-266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34344296

RESUMEN

Pluripotent stem cells (PSCs) have unlimited capacity for self-renewal and differentiation so that they can potentially produce any cell or tissue of animal's body. The PSCs derived from livestock represents a more appropriate model than a rodent for investigating human diseases due to their higher anatomical and physiological resemblance with human. Apart from that, livestock PSCs hold immense promises for innovative therapies, transgenic animal production and their biomedical interest. The realization of the full potential of PSCs, however, depends on the elucidation of the molecular mechanisms which play a critical role in the maintenance of pluripotency and reprogramming procedure remains poorly understood in livestock which in turn impedes the generation of true PSCs and their usage for clinical research. An in-depth understanding of pluripotency is extremely essential for improving health and welfare of livestock animals. Therefore, the present review focuses on the milestone achievements of PSCs in livestock animals and their potential application in health and production of livestock.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Diferenciación Celular , Reprogramación Celular , Humanos , Ganado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA