Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912549

RESUMEN

8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.

2.
J Environ Manage ; 362: 121346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824884

RESUMEN

The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.


Asunto(s)
Carbono , Hidrógeno , Nitratos , Nitrógeno , Aguas Residuales , Nitrógeno/química , Aguas Residuales/química , Hidrógeno/química , Carbono/química , Catálisis , Nitratos/química , Cobre/química , Paladio/química , Contaminantes Químicos del Agua/química
3.
Angew Chem Int Ed Engl ; : e202407870, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748475

RESUMEN

Converting spent lithium-ion batteries (LIBs) cathode materials into environmental catalysts has drawn more and more attention. Herein, we fabricated a Co3O4-based catalyst from spent LiCoO2 LIBs (Co3O4-LIBs) and found that the role of Al and Cu from current collectors on its performance is nonnegligible. The density functional theory calculations confirmed that the doping of Al and/or Cu upshifts the d-band center of Co. A Fenton-like reaction based on peroxymonosulfate (PMS) activation was adopted to evaluate its activity. Interestingly, Al doping strengthened chemisorption for PMS (from -2.615 eV to -2.623 eV) and shortened Co-O bond length (from 2.540 Å to 2.344 Å) between them, whereas Cu doping reduced interfacial charge-transfer resistance (from 28.347 kΩ to 6.689 kΩ) excepting for the enhancement of the above characteristics. As expected, the degradation activity toward bisphenol A of Co3O4-LIBs (0.523 min-1) was superior to that of Co3O4 prepared from commercial CoC2O4 (0.287 min-1). Simultaneously, the reasons for improved activity were further verified by comparing activity with catalysts doped Al and/or Cu into Co3O4. This work reveals the role of elements from current collectors on the performance of functional materials from spent LIBs, which is beneficial to the sustainable utilization of spent LIBs.

4.
J Environ Manage ; 324: 116405, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352730

RESUMEN

The mass transfer on the catalyst surface has a great influence on the selectivity of electrocatalytic nitrate reduction to nitrogen. In this study, a Pd-Cu adsorption confined nickel foam cathode is designed in the absence of both proton exchange membranes and chloride ions. The repulsion of the cathode enables intermediate products such as nitrite to accumulate in the confined region, resulting in an increase in the possibility of a second-order reaction to form nitrogen. The system can obtain more than 92% continuous N2 selectivity when it is used to treat 200 mg L-1 NO3--N under a current density of 8 mA cm-2, which is not only higher than those of semiconfined and nonconfined systems but also significantly better than the results obtained by Pd-Cu directly modified cathodes prepared by electrodeposition or impregnation. It is found that a high initial nitrate concentration and low current density are more beneficial for the accumulation of intermediates on Pd-Cu catalysts, thus improving the formation of nitrogen. A mechanism study reveals that the intermediates can completely occupy the active sites on the surface of Pd, avoiding the generation of active hydrogen, and therefore inhibiting the first-order reaction to produce ammonia. Moreover, the reducibility of Pd-Cu can also be gradually improved under the function of the cathode so that the system exhibits good stability. This study demonstrates an environmentally friendly and promising method for total nitrogen removal from industrial wastewater with high conductivity.

5.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8244-8264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37015558

RESUMEN

Depth completion aims at predicting dense pixel-wise depth from an extremely sparse map captured from a depth sensor, e.g., LiDARs. It plays an essential role in various applications such as autonomous driving, 3D reconstruction, augmented reality, and robot navigation. Recent successes on the task have been demonstrated and dominated by deep learning based solutions. In this article, for the first time, we provide a comprehensive literature review that helps readers better grasp the research trends and clearly understand the current advances. We investigate the related studies from the design aspects of network architectures, loss functions, benchmark datasets, and learning strategies with a proposal of a novel taxonomy that categorizes existing methods. Besides, we present a quantitative comparison of model performance on three widely used benchmarks, including indoor and outdoor datasets. Finally, we discuss the challenges of prior works and provide readers with some insights for future research directions.

6.
Neuron ; 110(8): 1327-1339.e6, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35139365

RESUMEN

The nervous and immune systems are closely entwined to maintain the immune balance in health and disease. Here, we showed that LPS can activate suprarenal and celiac ganglia (SrG-CG) neurons and upregulate NPY expression in rats. Single-cell sequencing analysis revealed that knockdown of the NPY gene in SrG-CG altered the proliferation and activation of splenic lymphocytes. In a neuron and splenocyte coculture system and in vivo experiments, neuronal NPY in SrG-CG attenuated the splenic immune response. Notably, we demonstrated that neuronal NPF in Drosophila exerted a conservative immunomodulatory effect. Moreover, numerous SNPs in NPY and its receptors were significantly associated with human autoimmune diseases, which was further supported by the autoimmune disease patients and mouse model experiments. Together, we demonstrated that NPY is an ancient language for nervous-immune system crosstalk and might be utilized to alleviate inflammatory storms during infection and to modulate immune balance in autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Neuropéptido Y , Animales , Enfermedades Autoinmunes/metabolismo , Humanos , Inmunidad , Ratones , Neuronas/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Ratas , Receptores de Neuropéptido Y/genética , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA