Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 238(8): 1937-1948, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37334929

RESUMEN

We previously reported that microRNA (miR)23a and miR30b are selectively sorted into exosomes derived from rickettsia-infected endothelial cells (R-ECExos). Yet, the mechanism remains unknown. Cases of spotted fever rickettsioses have been increasing, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the goal of the present study is to further dissect the molecular mechanism underlying R-ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Infected ticks transmit the rickettsiae to human hosts following a bite and injections of the bacteria into the skin. In the present study, we demonstrate that treatment with R-ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin, and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. We did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R-ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a monopartition, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R-ECExos.


Asunto(s)
MicroARNs , Infecciones por Rickettsia , Rickettsia , Rickettsiosis Exantemáticas , Humanos , Células Endoteliales , MicroARNs/genética , Infecciones por Rickettsia/genética , Infecciones por Rickettsia/microbiología , Rickettsia/genética
2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203569

RESUMEN

Unlike other coronaviruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly infected the global population, with some suffering long-term effects. Thanks to extensive data on SARS-CoV-2 made available through global, multi-level collaborative research, investigators are getting closer to understanding the mechanisms of SARS-CoV-2 infection. Here, using publicly available total and small RNAseq data of Calu3 cell lines, we conducted a comparative analysis of the changes in tRNA fragments (tRFs; regulatory small noncoding RNAs) in the context of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 infections. We found extensive upregulation of multiple tRFs in SARS-CoV-2 infection that was not present in SARS-CoV or other virus infections our group has studied. By comparing the total RNA changes in matching samples, we identified significant downregulation of TRDMT1 (tRNA methyltransferase), only in SARS-CoV-2 infection, a potential upstream event. We further found enriched neural functions among downregulated genes with SARS-CoV-2 infection. Interestingly, theoretically predicted targets of the upregulated tRFs without considering mRNA expression data are also enriched in neural functions such as axon guidance. Based on a combination of expression data and theoretical calculations, we propose potential targets for tRFs. For example, among the mRNAs downregulated with SARS-CoV-2 infection (but not with SARS-CoV infection), SEMA3C is a theoretically calculated target of multiple upregulated tRFs and a ligand of NRP1, a SARS-CoV-2 receptor. Our analysis suggests that tRFs contribute to distinct neurological features seen in SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Regulación hacia Arriba , Regulación hacia Abajo , ARN de Transferencia/genética , Hormona Liberadora de Tirotropina
3.
J Surg Res ; 257: 306-316, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890866

RESUMEN

BACKGROUND: A keloid is a type of pathological scar often caused by abnormal tissue repair after a skin injury and is more common in genetically susceptible individuals. cAMP is a universal second messenger and regulates critical physiological processes, including calcium homeostasis, secretion, cell fate, and gene transcription, by affecting the expression of the exchange protein directly activated by cAMP (Epac). Epac has two isoforms, Epac1 (cAMP-GEF-1) and Epac2 (cAMP-GEF-II), which show varying expression levels depending on the tissue and cell type. The expression of Epac1 in keloids has not yet been investigated. MATERIALS AND METHODS: Keloid tissue and normal dermal skin tissue were analyzed by hematoxylin and eosin staining and immunofluorescence. Primary human keloid fibroblasts (HKFs) and human normal dermal fibroblasts were studied using immunofluorescence, wound healing tests, reverse transcription polymerase chain reaction, and western blot analysis with different concentrations of the Epac1 inhibitor ESI-09. RESULTS: Downregulation of Epac was performed using ESI-09, a specific Epac inhibitor. The proliferation and migration capacities of HKFs and human normal dermal fibroblasts showed an ESI-09 concentration-dependent decrease. Furthermore, the apoptosis rates were significantly different between fibroblasts treated with ESI-09 and control fibroblasts. In addition, the phosphorylation level of Akt was significantly decreased, indicating that ESI-09 reduces fibrosis and induces apoptosis through Akt signaling in HKFs. CONCLUSIONS: Our results illustrate the role of Epac1 in regulating fibroblast function during keloid pathogenesis and indicate that Epac1 may be a potential therapeutic target in keloid treatment.


Asunto(s)
Fibroblastos/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Queloide/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Dermis/citología , Dermis/patología , Regulación hacia Abajo , Fibrosis , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Hidrazonas/farmacología , Isoxazoles/farmacología , Cultivo Primario de Células , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Bioorg Med Chem ; 39: 116157, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33895704

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children, and specific treatment for RSV infections remains unavailable. We herein reported a series of substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent RSV inhibitors. Among them, six low cytotoxic compounds (11, 12, 15, 22, 26, and 28) have been identified and selected to study associated inhibitory mechanisms. All these compounds suppressed not only the viral replication but also RSV-induced IRF3 and NF-κB activation and associated production of cytokines/chemokines. The two most potent compounds (15 and 22) were selected for further molecular mechanism studies associated with their suppression effect on RSV-activated IRF3 and NF-κB. These two compounds decreased RSV-induced IRF3 phosphorylation at serine 396 and p65 phosphorylation at serine 536 at both early and late infection phases. In addition, compound 22 also inhibited RSV-induced p65 phosphorylation at serine 276 at the late phase of RSV infection.


Asunto(s)
Antivirales/farmacología , Benzamidas/química , Benzamidas/farmacología , Inflamación/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Benzamidas/uso terapéutico , Humanos , Inflamación/etiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Virus Sincitiales Respiratorios/fisiología
5.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670458

RESUMEN

Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-ß signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-ß should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-ß promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-ß signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-ß and resultantly IFN-stimulated genes. nc886's role might be to restrict the IFN-ß signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , ARN no Traducido/inmunología , Animales , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ratones , FN-kappa B/inmunología , FN-kappa B/metabolismo , Regiones Promotoras Genéticas/genética , Células RAW 264.7 , ARN no Traducido/genética , Transducción de Señal/inmunología , Factor de Transcripción AP-1/inmunología , Factor de Transcripción AP-1/metabolismo , Virus/inmunología , eIF-2 Quinasa/genética , eIF-2 Quinasa/inmunología , eIF-2 Quinasa/metabolismo
6.
J Med Virol ; 92(12): 2946-2954, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32073159

RESUMEN

Human metapneumovirus (HMPV) is a leading cause of lower respiratory tract infection (LRTI) in pediatric and geriatric populations. We recently found that two PDZ-binding motifs of the M2-2 protein, 29-DEMI-32 and 39-KEALSDGI-46, play a significant role in mediating HMPV immune evasion in airway epithelial cells (AECs). However, their role in the overall pulmonary responses to HMPV infection has not been investigated. In this study, we found that two recombinant HMPVs (rHMPV) lacking the individual M2-2 PDZ-binding motif are attenuated in mouse lungs. Mice infected with mutants produce more cytokines/chemokines in bronchoalveolar lavage (BAL) fluid compared to mice infected with wild-type rHMPV. In addition, both mutants are able to enhance the pulmonary recruitment of dendritic cells (DCs) and T cells and induce effective protections against the HMPV challenge. The DC maturation is also significantly improved by the motif mutation. Taken together, our data provide proof-of-principle for two live-attenuated M2-2 mutants to be promising HMPV vaccine candidates that are effective in inducing higher pulmonary innate immunity and generating protection against HMPV infection.

7.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233493

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants, the elderly, and immune-compromised patients. It is also a significant contributor to upper respiratory tract infection in the pediatric population. However, its disease mechanisms are still largely unknown. We have recently shown that a tRNA-derived RNA fragment (tRF) from the 5'-end of mature tRNA encoding GluCTC (tRF5-GluCTC), a recently discovered non-coding RNA, is functionally important for RSV replication and host gene regulation at the post-transcriptional level. However, how tRF5-GluCTC carries out the gene regulation is not fully known. In this study, we found that tRF5-GluCTC has impaired gene trans-silencing function in cells deficient of AGO1 or 4, while AGO2 and 3 seem not involved in tRF5-GluCTC-mediated gene regulation. By pulling down individual AGO protein, we discovered that tRF5-GluCTC is detectable only in the AGO4 complex, confirming the essential role of AGO4 in gene regulation and also suggesting that AGO1 contributes to the gene trans-silencing activity of tRF5-GluCTC in an atypical way. We also found that the P protein of RSV is associated with both AGO1 and 4 and AGO4 deficiency leads to reduced infectious viral particles. In summary, this study demonstrates the importance of AGO1 and 4 in mediating the gene trans-silencing function of tRF5-GluCTC.


Asunto(s)
Proteínas Argonautas/genética , Factores Eucarióticos de Iniciación/genética , Silenciador del Gen , ARN de Transferencia/genética , ARN no Traducido/genética , Virus Sincitial Respiratorio Humano/genética , Células A549 , Proteínas Argonautas/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Genes Reporteros , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Luciferasas/genética , Luciferasas/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Transducción de Señal , Carga Viral , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral
8.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30185593

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in young children and high-risk adults. However, a specific treatment for this viral infection is not currently available. In this study, we discovered that an exchange protein directly activated by cyclic AMP (EPAC) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, treatment with EPAC inhibitor (ESI-09), but not protein kinase A inhibitor (H89), significantly inhibits RSV replication and proinflammatory cytokine/chemokine induction. In addition, RSV-activated transcriptional factors belonging to the NF-κB and IRF families are also suppressed by ESI-09. Through isoform-specific gene knockdown, we found that EPAC2, but not EPAC1, plays a dominant role in controlling RSV replication and virus-induced host responses. Experiments using both EPAC2 knockout and EPAC2-specific inhibitor support such roles of EPAC2. Therefore, EPAC2 is a promising therapeutic target to regulate RSV replication and associated inflammation.IMPORTANCE RSV is a serious public health problem, as it is associated with bronchiolitis, pneumonia, and asthma exacerbations. Currently no effective treatment or vaccine is available, and many molecular mechanisms regarding RSV-induced lung disease are still significantly unknown. This project aims to elucidate an important and novel function of a protein, called EPAC2, in RSV replication and innate inflammatory responses. Our results should provide an important insight into the development of new pharmacologic strategies against RSV infection, thereby reducing RSV-associated morbidity and mortality.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/genética , Replicación Viral/fisiología , Células A549 , Animales , Línea Celular , Quimiocinas/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Humanos , Hidrazonas/farmacología , Isoquinolinas/farmacología , Isoxazoles/farmacología , Ratones , FN-kappa B/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética , Infecciones por Virus Sincitial Respiratorio/virología , Sulfonamidas/farmacología
9.
J Gen Virol ; 98(7): 1600-1610, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28708049

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRTI) in children from infancy up to early childhood. Recently, we demonstrated that RSV infection alters cellular small non-coding RNA (sncRNA) expression, most notably the tRNA-derived RNA fragments (tRFs). However, the functions of the tRFs in virus-host interaction are largely unknown. Herein, we examined the role of three RSV-induced tRFs derived from the 5-end of mature tRNAs decoding GlyCCC, LysCTT and CysGCA (named tRF5-GlyCCC, tRF5-LysCTT and tRF5-CysGCA, respectively) in controlling RSV replication. We found that tRF5-GlyCCC and tRF5-LysCTT, but not tRF5-CysGCA, promote RSV replication, demonstrating the functional specificity of tRFs. The associated molecular mechanisms underlying the functions of tRF5-GlyCCC and tRF5-LysCTT were also investigated. Regulating the expression and/or activity of these tRFs may provide new insights into preventive and therapeutic strategies for RSV infection. The study also accumulated data for future development of a tRF targeting algorithm.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , Virus Sincitial Respiratorio Humano/genética , Replicación Viral/genética , Células A549 , Secuencia de Bases , Línea Celular , Niño , Preescolar , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/virología , Análisis de Secuencia de ARN
10.
J Virol ; 90(9): 4369-4382, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26889027

RESUMEN

UNLABELLED: Accumulating data suggest that tripartite-motif-containing (TRIM) proteins participate in host responses to viral infections, either by acting as direct antiviral restriction factors or through regulating innate immune signaling of the host. Of >70 TRIMs, TRIM56 is a restriction factor of several positive-strand RNA viruses, including three members of the family Flaviviridae(yellow fever virus, dengue virus, and bovine viral diarrhea virus) and a human coronavirus (OC43), and this ability invariably depends upon the E3 ligase activity of TRIM56. However, the impact of TRIM56 on negative-strand RNA viruses remains unclear. Here, we show that TRIM56 puts a check on replication of influenza A and B viruses in cell culture but does not inhibit Sendai virus or human metapneumovirus, two paramyxoviruses. Interestingly, the anti-influenza virus activity was independent of the E3 ligase activity, B-box, or coiled-coil domain. Rather, deletion of a 63-residue-long C-terminal-tail portion of TRIM56 abrogated the antiviral function. Moreover, expression of this short C-terminal segment curtailed the replication of influenza viruses as effectively as that of full-length TRIM56. Mechanistically, TRIM56 was found to specifically impede intracellular influenza virus RNA synthesis. Together, these data reveal a novel antiviral activity of TRIM56 against influenza A and B viruses and provide insights into the mechanism by which TRIM56 restricts these medically important orthomyxoviruses. IMPORTANCE: Options to treat influenza are limited, and drug-resistant influenza virus strains can emerge through minor genetic changes. Understanding novel virus-host interactions that alter influenza virus fitness may reveal new targets/approaches for therapeutic interventions. We show here that TRIM56, a tripartite-motif protein, is an intrinsic host restriction factor of influenza A and B viruses. Unlike its antiviral actions against positive-strand RNA viruses, the anti-influenza virus activity of TRIM56 was independent of the E3 ligase activity. Rather, expression of a short segment within the very C-terminal tail of TRIM56 inhibited the replication of influenza viruses as effectively as that of full-length TRIM56 by specifically targeting viral RNA synthesis. These data reveal the remarkable multifaceted activity of TRIM56, which has developed multiple domains to inhibit multiple viral families. They also raise the possibility of developing a broad-spectrum, TRIM56-based antiviral approach for addition to influenza prophylaxis and/or control strategies.


Asunto(s)
Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/genética , Gripe Humana/virología , Dominios y Motivos de Interacción de Proteínas , ARN Viral/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Replicación Viral , Animales , Línea Celular , Expresión Génica Ectópica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/metabolismo , Mutación , Transporte de Proteínas , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Tropismo Viral/genética , Liberación del Virus/genética
11.
Mol Ther ; 23(10): 1622-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26156244

RESUMEN

Target identification is highly instructive in defining the biological roles of microRNAs. However, little is known about other small noncoding RNAs; for example, tRNA-derived RNA Fragments (tRFs). Some tRFs exhibit a gene-silencing mechanism distinctly different from that of typical microRNAs. We recently demonstrated that a respiratory syncytial virus (RSV)-induced tRF, called tRF5-GluCTC, promotes RSV replication. RSV is the single most important cause of lower respiratory tract infection in children. By using biochemical screening and bioinformatics analyses, we have identified apolipoprotein E receptor 2 (APOER2) as a target of tRF5-GluCTC. The 3'-portion of tRF5-GluCTC recognizes a target site in the 3'-untranslated region of APOER2 and suppresses its expression. We have also discovered that APOER2 is an anti-RSV protein whose suppression by tRF5-GluCTC promotes RSV replication. Our report represents the first identification of a natural target of a tRF and illustrates how a virus utilizes a host tRF to control a host gene to favor its replication.


Asunto(s)
Silenciador del Gen , Interferencia de ARN , Secuencia de Bases , Sitios de Unión , Línea Celular , Regulación de la Expresión Génica , Humanos , Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Unión Proteica , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Virus Sincitial Respiratorio Humano/fisiología , Transfección , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral/genética
12.
J Gen Virol ; 96(8): 2104-2113, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25953917

RESUMEN

Human metapneumovirus (hMPV) is a common cause of respiratory tract infection in the paediatrics population. Recently, we and others have shown that retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) are essential for hMPV-induced cellular antiviral signalling. However, the contribution of those receptors to host immunity against pulmonary hMPV infection is largely unexplored. In this study, mice deficient in mitochondrial antiviral-signalling protein (MAVS), an adaptor of RLRs, were used to investigate the role(s) of these receptors in pulmonary immune responses to hMPV infection. MAVS deletion significantly impaired the induction of antiviral and pro-inflammatory cytokines and the recruitment of immune cells to the bronchoalveolar lavage fluid by hMPV. Compared with WT mice, mice lacking MAVS demonstrated decreased abilities to activate pulmonary dendritic cells (DCs) and abnormal primary T-cell responses to hMPV infection. In addition, mice deficient in MAVS had a higher peak of viral load at day 5 post-infection (p.i.) than WT mice, but were able to clear hMPV by day 7 p.i. similarly to WT mice. Taken together, our data indicate a role of MAVS-mediated pathways in the pulmonary immune responses to hMPV infection and the early control of hMPV replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Metapneumovirus/inmunología , Infecciones por Paramyxoviridae/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/inmunología , Femenino , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/virología , Masculino , Metapneumovirus/genética , Ratones , Ratones Noqueados , Infecciones por Paramyxoviridae/genética , Infecciones por Paramyxoviridae/virología , Linfocitos T/inmunología
13.
Mol Ther ; 21(2): 368-79, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23183536

RESUMEN

The discovery of small noncoding RNAs (sncRNAs) with regulatory functions is a recent breakthrough in biology. Among sncRNAs, microRNA (miRNA), derived from host or virus, has emerged as elements with high importance in control of viral replication and host responses. However, the expression pattern and functional aspects of other types of sncRNAs, following viral infection, are unexplored. In order to define expression patterns of sncRNAs, as well as to discover novel regulatory sncRNAs in response to viral infection, we applied deep sequencing to cells infected with human respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in babies. RSV infection leads to abundant production of transfer RNA (tRNA)-derived RNA Fragments (tRFs) that are ~30 nucleotides (nts) long and correspond to the 5'-half of mature tRNAs. At least one tRF, which is derived from tRNA-Glu-CTC, represses target mRNA in the cytoplasm and promotes RSV replication. This demonstrates that this tRF is not a random by-product of tRNA degradation but a functional molecule. The biogenesis of this tRF is also specific, as it is mediated by the endonuclease angiogenin (ANG), not by other nucleases. In summary, our study presents novel information on the induction of a functional tRF by viral infection.


Asunto(s)
Regulación Viral de la Expresión Génica , ARN Interferente Pequeño/aislamiento & purificación , ARN de Transferencia/aislamiento & purificación , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Técnicas Biosensibles , Northern Blotting , Bronquiolitis/genética , Bronquiolitis/virología , Diferenciación Celular , Línea Celular Tumoral , Mapeo Cromosómico , Citoplasma/metabolismo , Células Epiteliales/citología , Células Epiteliales/virología , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Luciferasas/genética , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/aislamiento & purificación , Plásmidos/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/aislamiento & purificación , ARN de Transferencia/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Ribonucleasa Pancreática/genética , Ribonucleasa Pancreática/metabolismo , Replicación Viral
14.
Pathogens ; 13(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38535583

RESUMEN

Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aß42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.

15.
J Virol ; 86(23): 13049-61, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23015697

RESUMEN

Human metapneumovirus (hMPV) is a leading cause of respiratory infections in pediatric populations globally, with no prophylactic or therapeutic measures. Recently, a recombinant hMPV lacking the M2-2 protein (rhMPV-ΔM2-2) demonstrated reduced replication in the respiratory tract of animal models, making it a promising live vaccine candidate. However, the exact nature of the interaction between the M2-2 protein and host cells that regulates viral infection/propagation is largely unknown. By taking advantage of the available reverse genetics system and ectopic expression system for viral protein, we found that M2-2 not only promotes viral gene transcription and replication but subverts host innate immunity, therefore identifying M2-2 as a novel virulence factor, in addition to the previously described hMPV G protein. Since we have shown that the RIG-I/MAVS pathway plays an important role in hMPV-induced signaling in airway epithelial cells, we investigated whether M2-2 antagonizes the host cellular responses by targeting this pathway. Reporter gene assays and coimmunoprecipitation studies indicated that M2-2 targets MAVS, an inhibitory mechanism different from what we previously reported for hMPV G, which affects RIG-I- but not MAVS-dependent gene transcription. In addition, we found that the domains of M2-2 responsible for the regulation of viral gene transcription and antiviral signaling are different. Our findings collectively demonstrate that M2-2 contributes to hMPV immune evasion through the inhibition of MAVS-dependent cellular responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Evasión Inmune/genética , Metapneumovirus/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Análisis de Varianza , Animales , Western Blotting , Chlorocebus aethiops , Cartilla de ADN/genética , Humanos , Inmunoprecipitación , Metapneumovirus/genética , Metapneumovirus/inmunología , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética/genética , Células Vero , Proteínas Virales/genética , Factores de Virulencia/genética
16.
J Immunol ; 187(1): 47-54, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632720

RESUMEN

Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory infections in children and adults. Recent work from our group demonstrated that hMPV G glycoprotein is an important virulence factor, responsible for inhibiting innate immune responses in airway epithelial cells. Myeloid dendritic cells (DCs) are potent APCs and play a major role in initiating and modulating the innate and adaptive immune responses. In this study, we found that TLR4 plays a major role in hMPV-induced activation of monocyte-derived DCs (moDCs), as downregulation of its expression by small interfering RNA significantly blocked hMPV-induced chemokine and type I IFN expression. Similar results were found in bone marrow-derived DCs from TLR4-deficient mice. moDCs infected with a virus lacking G protein expression produced higher levels of cytokines and chemokines compared with cells infected with wild-type virus, suggesting that G protein plays an inhibitory role in viral-induced cellular responses. Specifically, G protein affects TLR4-dependent signaling, as infection of moDCs with recombinant hMPV lacking G protein inhibited LPS-induced production of cytokine and chemokines significantly less than did wild-type virus, and treatment of moDCs with purified G protein resulted in a similar inhibition of LPS-dependent signaling. Our results demonstrate that hMPV G protein plays an important role in inhibiting host innate immune responses, likely affecting adaptive responses too.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , Glicoproteínas/fisiología , Mediadores de Inflamación/fisiología , Metapneumovirus/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/fisiología , Proteínas Virales/fisiología , Inmunidad Adaptativa , Adulto , Animales , Línea Celular , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/virología , Receptor Toll-Like 4/deficiencia
17.
J Alzheimers Dis ; 96(3): 1285-1304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980659

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, affecting individuals over 65. AD is also a multifactorial disease, with disease mechanisms incompletely characterized, and disease-modifying therapies are marginally effective. Biomarker signatures may shed light on the diagnosis, disease mechanisms, and the development of therapeutic targets. tRNA-derived RNA fragments (tRFs), a family of recently discovered small non-coding RNAs, have been found to be significantly enhanced in human AD hippocampus tissues. However, whether tRFs change in body fluids is unknown. OBJECTIVE: To investigate whether tRFs in body fluids are impacted by AD. METHODS: We first used T4 polynucleotide kinase-RNA-seq, a modified next-generation sequencing technique, to identify detectable tRFs in human cerebrospinal fluid and serum samples. The detectable tRFs were then compared in these fluids from control, AD, and mild cognitive impairment patients using tRF qRT-PCR. The stability of tRFs in serum was also investigated by checking the change in tRFs in response to protein digestion or exosome lysis. RESULTS: Among various tRFs, tRF5-ProAGG seemed to be impacted by AD in both cerebrospinal fluid and serum. AD-impacted serum tRF5-ProAGG showed a correlation with the AD stage. Putative targets of tRF5-ProAGG in the hippocampus were also predicted by a computational algorithm, with some targets being validated experimentally and one of them being in a negative correlation with tRF5-ProAGG even using a small size of samples. CONCLUSIONS: tRF5-ProAGG showed the potential as an AD biomarker and may play a role in disease progression.


Asunto(s)
Enfermedad de Alzheimer , Suero , Humanos , Suero/metabolismo , Enfermedad de Alzheimer/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN , Biomarcadores
18.
Viruses ; 14(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062354

RESUMEN

The susceptibility to respiratory syncytial virus (RSV) infection in early life has been associated with a deficient T-helper cell type 1 (Th1) response. Conversely, healthy adults generally do not exhibit severe illness from RSV infection. In the current study, we investigated whether Th1 cytokine IFN-γ is essential for protection against RSV and RSV-associated comorbidities in adult mice. We found that, distinct from influenza virus, prior RSV infection does not induce significant IFN-γ production and susceptibility to secondary Streptococcus pneumoniae infection in adult wild-type (WT) mice. In ovalbumin (OVA)-induced asthmatic mice, RSV super-infection increases airway neutrophil recruitment and inflammatory lung damage but has no significant effect on OVA-induced eosinophilia. Compared with WT controls, RSV infection of asthmatic Ifng-/- mice results in increased airway eosinophil accumulation. However, a comparable increase in eosinophilia was detected in house dust mite (HDM)-induced asthmatic Ifng-/- mice in the absence of RSV infection. Furthermore, neither WT nor Ifng-/- mice exhibit apparent eosinophil infiltration during RSV infection alone. Together, these findings indicate that, despite its critical role in limiting eosinophilic inflammation during asthma, IFN-γ is not essential for protection against RSV-induced exacerbation of asthmatic inflammation in adult mice.


Asunto(s)
Asma/patología , Inflamación/inmunología , Interferón gamma/inmunología , Pulmón/inmunología , Pulmón/patología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Asma/inducido químicamente , Asma/inmunología , Líquido del Lavado Bronquioalveolar , Coinfección/inmunología , Coinfección/microbiología , Coinfección/prevención & control , Comorbilidad , Femenino , Inflamación/prevención & control , Interferón gamma/genética , Pulmón/microbiología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/administración & dosificación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Células TH1 , Células Th2
19.
Transl Res ; 249: 13-27, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688318

RESUMEN

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. Notably, mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.


Asunto(s)
COVID-19 , Vacunas Virales , Adyuvantes Inmunológicos/farmacología , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Mucosa , Inmunoglobulina A , Ratones , Porosidad , SARS-CoV-2 , Silicio/farmacología , Vacunas de Subunidad
20.
Front Mol Biosci ; 9: 821137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281271

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. In the context of viral infections, small non-coding RNAs (sncRNAs) are known to play important roles in regulating the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we found that sncRNA profiles in human nasopharyngeal swabs (NPS) samples are significantly impacted by SARS-CoV-2. Among impacted sncRNAs, tRFs are the most significantly affected and most of them are derived from the 5'-end of tRNAs (tRF5). Such a change was also observed in SARS-CoV-2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several small virus-derived ncRNAs (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA