Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Cell Physiol ; 62(6): 959-970, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34037236

RESUMEN

Most land plants entertain a mutualistic symbiosis known as arbuscular mycorrhiza with fungi (Glomeromycota) that provide them with essential mineral nutrients, in particular phosphate (Pi), and protect them from biotic and abiotic stress. Arbuscular mycorrhizal (AM) symbiosis increases plant productivity and biodiversity and is therefore relevant for both natural plant communities and crop production. However, AM fungal populations suffer from intense farming practices in agricultural soils, in particular Pi fertilization. The dilemma between natural fertilization from AM symbiosis and chemical fertilization has raised major concern and emphasizes the need to better understand the mechanisms by which Pi suppresses AM symbiosis. Here, we test the hypothesis that Pi may interfere with AM symbiosis via the phytohormone gibberellic acid (GA) in the Solanaceous model systems Petunia hybrida and Nicotiana tabacum. Indeed, we find that GA is inhibitory to AM symbiosis and that Pi may cause GA levels to increase in mycorrhizal roots. Consistent with a role of endogenous GA as an inhibitor of AM development, GA-defective N. tabacum lines expressing a GA-metabolizing enzyme (GA methyltransferase-GAMT) are colonized more quickly by the AM fungus Rhizoglomus irregulare, and exogenous Pi is less effective in inhibiting AM colonization in these lines. Systematic gene expression analysis of GA-related genes reveals a complex picture, in which GA degradation by GA2 oxidase plays a prominent role. These findings reveal potential targets for crop breeding that could reduce Pi suppression of AM symbiosis, thereby reconciling the advantages of Pi fertilization with the diverse benefits of AM symbiosis.


Asunto(s)
Giberelinas/metabolismo , Micorrizas/fisiología , Nicotiana/fisiología , Petunia/fisiología , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Transducción de Señal , Simbiosis
2.
New Phytol ; 229(6): 3481-3496, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33231304

RESUMEN

The intimate association of host and fungus in arbuscular mycorrhizal (AM) symbiosis can potentially trigger induction of host defence mechanisms against the fungus, implying that successful symbiosis requires suppression of defence. We addressed this phenomenon by using AM-defective vapyrin (vpy) mutants in Petunia hybrida, including a new allele (vpy-3) with a transposon insertion close to the ATG start codon. We explore whether abortion of fungal infection in vpy mutants is associated with the induction of defence markers, such as cell wall alterations, accumulation of reactive oxygen species (ROS), defence hormones and induction of pathogenesis-related (PR) genes. We show that vpy mutants exhibit a strong resistance against intracellular colonization, which is associated with the generation of cell wall appositions (papillae) with lignin impregnation at fungal entry sites, while no accumulation of defence hormones, ROS or callose was observed. Systematic analysis of PR gene expression revealed that several PR genes are induced in mycorrhizal roots of the wild-type, and even more in vpy plants. Some PR genes are induced exclusively in vpy mutants. Our results suggest that VPY is involved in avoiding or suppressing the induction of a cellular defence syndrome that involves localized lignin deposition and PR gene induction.


Asunto(s)
Micorrizas , Petunia , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lignina , Micorrizas/genética , Petunia/genética , Raíces de Plantas , Simbiosis
3.
Plant Physiol ; 168(3): 788-97, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25971550

RESUMEN

Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Micorrizas/crecimiento & desarrollo , Petunia/genética , Petunia/microbiología , Proteínas de Plantas/metabolismo , Simbiosis/genética , Factores de Transcripción/metabolismo , Recuento de Colonia Microbiana , Genes de Plantas , Sitios Genéticos , Medicago truncatula/genética , Medicago truncatula/microbiología , Meristema/genética , Meristema/microbiología , Datos de Secuencia Molecular , Morfogénesis , Mutación/genética , Fenotipo , Proteínas de Plantas/genética , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 110(6): 2389-94, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23335630

RESUMEN

DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is correlated with the down-regulation of key transcriptional gene silencing factors and is partly dependent on an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoter regions, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to TEs/repeats.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , ARN Interferente Pequeño/genética
5.
BMC Plant Biol ; 14: 333, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25465219

RESUMEN

BACKGROUND: Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. RESULTS: Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. CONCLUSIONS: We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.


Asunto(s)
Biología Computacional , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/genética , Magnoliopsida/microbiología , Micorrizas/fisiología , Proteínas de Plantas/genética , Perfilación de la Expresión Génica , Magnoliopsida/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Simbiosis
6.
Front Plant Sci ; 10: 666, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231402

RESUMEN

Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires the intracellular accommodation of the fungal partner in the host. For reciprocal nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the peri-arbuscular membrane. This membrane, together with the fungal plasma membrane, and the space in between, constitute the symbiotic interface, over which nutrients are exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which is induced in colonized cells, and which localizes to numerous small mobile structures of unknown identity (Vapyrin-bodies). In order to characterize the identity and function of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed biochemical tools to identify interacting partner proteins of VAPYRIN. As an important tool for the quantitative analysis of confocal microscopic data sets from co-expression of fluorescent proteins, we developed a semi-automated image analysis pipeline that allows for precise spatio-temporal quantification of protein co-localization and of the dynamics of organelle association from movies. Taken together, these experiments revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes to the same compartment.

7.
Nat Plants ; 2(6): 16074, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27255838

RESUMEN

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


Asunto(s)
Evolución Molecular , Genoma de Planta , Hibridación Genética , Petunia/genética , Poliploidía
8.
Front Plant Sci ; 3: 223, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060892

RESUMEN

As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA