Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(1): 39-51, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38047529

RESUMEN

Polycrystallinity is often an unintended consequence of real manufacturing processes used to produce designer porous media with deterministic and periodic architectures. Porous media are widely employed as high-surface conduits for fluid transport; unfortunately, even small concentrations of defects in the long-range order become the dominant impediment to hydrodynamic transport. In this study, we isolate the effects of these defects using a microfluidic analogy to energy transport in atomic polycrystals by directly tracking capillary transport through polycrystalline inverse opals. We reveal─using high-fidelity florescent microscopy─the boundary-limited nature of flow motions, along with nonlinear impedance elements introduced by the presence of "grain boundaries" that are separating the well-ordered "crystalline grains". Coupled crystallinity, anisotropy, and linear defect density contribute to direction-dominated flow characteristics in a discretized manner rather than traditional diffusive-like flow patterns. Separating individual crystal grains' transport properties from polycrystals along with new probabilistic data sets enables demonstrating statistical predictive models. These results provide fundamental insight into transport phenomena in (poly)crystalline porous media beyond the deterministic properties of an idealized unit cell and bridge the gap between engineering models and the ubiquitous imperfections found in manufactured porous materials.

2.
Nanotechnology ; 29(15): 154003, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29384132

RESUMEN

Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

3.
Nano Lett ; 16(4): 2754-61, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26986050

RESUMEN

Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.

4.
Nanoscale ; 14(36): 13078-13089, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36043910

RESUMEN

The boiling efficacy is intrinsically tethered to trade-offs between the desire for bubble nucleation and necessity of vapor removal. The solution to these competing demands requires the separation of bubble activity and liquid delivery, often achieved through surface engineering. In this study, we independently engineer bubble nucleation and departure mechanisms through the design of heterogeneous and segmented nanowires with dual wettability with the aim of pushing the limit of structure-enhanced boiling heat transfer performances. The demonstration of separating liquid and vapor pathways outperforms state-of-the-art hierarchical nanowires, in particular, at low heat flux regimes while maintaining equal performances at high heat fluxes. A deep-learning based computer vision framework realized the autonomous curation and extraction of hidden big data along with digitalized bubbles. The combined efforts of materials design, deep learning techniques, and data-driven approach shed light on the mechanistic relationship between vapor/liquid pathways, bubble statistics, and phase change performance.

5.
Sci Rep ; 10(1): 13964, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811889

RESUMEN

We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO2) thin film on a silicon substrate with a gold back reflector. We experimentally characterize the optical properties of the VO2 film and use the results to optimize device design. Using a calibrated, transient calorimetry experiment we directly measure the temperature fluctuations arising from a time-varying heat load. Under laboratory conditions, we find that the device regulates temperature better than a constant emissivity sample. We use the experimental results to validate our thermal model, which can be used to predict device performance under the conditions of outer space. In this limit, thermal fluctuations are halved with reference to a constant-emissivity sample.

6.
ACS Appl Mater Interfaces ; 12(26): 29684-29691, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32496037

RESUMEN

Previous efforts to directly write conductive metals have been narrowly focused on nanoparticle ink suspensions that require aggressive sintering (>200 °C) and result in low-density, small-grained agglomerates with electrical conductivities <25% of bulk metal. Here, we demonstrate aerosol jet printing of a reactive ink solution and characterize high-density (93%) printed silver traces having near-bulk conductivity and grain sizes greater than the electron mean free path, while only requiring a low-temperature (80 °C) treatment. We have developed a predictive electronic transport model which correlates the microstructure to the measured conductivity and identifies a strategy to approach the practical conductivity limit for printed metals. Our analysis of how grain boundaries and tortuosity contribute to electrical resistivity provides insight into the basic materials science that governs how an ink formulator or process developer might approach improving the conductivity. Transmission line measurements validate that electrical properties are preserved up to 20 GHz, which demonstrates the utility of this technique for printed RF components. This work reveals a new method of producing robust printed electronics that retain the advantages of rapid prototyping and three-dimensional fabrication while achieving the performance necessary for success within the aerospace and communications industries.

7.
ACS Appl Mater Interfaces ; 11(1): 1546-1554, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30557501

RESUMEN

Capillary wicking through homogeneous porous media remains challenging to simultaneously optimize due to the unique transport phenomena that occur at different length scales. This challenge may be overcome by introducing hierarchical porous media, which combine tailored morphologies across multiple length scales to design for the individual transport mechanisms. Here, we fabricate hierarchical nanowire arrays consisting of vertically aligned copper nanowires (∼100 to 1000 nm length scale) decorated with dense copper oxide nanostructures (∼10 to 100 nm length scale) to create unique property sets that include a large specific surface area, high rates of fluid delivery, and the structural flexibility of vertical arrays. These hierarchical nanowire arrays possess enhanced capillary wicking ( K/ Reff = 0.004-0.023 µm) by utilizing hemispreading and are advantageous as evaporation surfaces. With the advent and acceleration of flexible electronics technologies, we measure the capillary properties of our freestanding hierarchical nanowire arrays installed on curved surfaces and observe comparable fluid delivery to flat arrays, showing the difference of 10-20%. The degree of effective inter-nanowire pore and porosity is shown to govern the capillary performance parameters, thereby this study provides the design strategy for capillary wicking materials with unique and tailored combinations of thermofluidic properties.

8.
ACS Appl Mater Interfaces ; 10(36): 30487-30494, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096232

RESUMEN

Microporous metals are used extensively for applications that combine convective and conductive transport and benefit from low resistance to both modes of transport. Conventional fabrication methods, such as direct sintering of metallic particles, however, often produce structures with limited fluid transport properties due to the lack of control over pore morphologies such as the pore size and porosity. Here, we demonstrate control and improvement of hydraulic permeability of microporous copper structures fabricated using template-assisted electrodeposition. Template sintering is shown to modify the fluid transport network in a manner that increases permeability by nearly an order of magnitude with a less significant decrease (∼38%) in thermal conductivity. The measured permeabilities range from 4.8 × 10-14 to 1.3 × 10-12 m2 with 5 µm pores, with the peak value being roughly 5 times larger than the published values for sintered copper particles of comparable feature sizes. Analysis indicates that the enhancement of permeability is limited by constrictions, i.e., bottlenecks between connecting pores, whose dimensions are highly sensitive to the sintering conditions. We further show contrasting trends in permeability versus conductivity of the electrodeposited microporous copper and conventional sintered copper particles and suggest these differing trends to be the result of their inverse structural relationship.

9.
ACS Appl Mater Interfaces ; 9(35): 30100-30106, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28786284

RESUMEN

The heat flow at the interfaces of complex nanostructures is three-dimensional in part due to the nonplanarity of interfaces. One example common in nanosystems is the situation when a significant fraction of the interfacial area is composed of sidewalls that are perpendicular to the principal plane, for example, in metallization structures for complementary metal-oxide semiconductor transistors. It is often observed that such sidewall interfaces contain significantly higher levels of microstructural disorder, which impedes energy carrier transport and leads to effective increases in interfacial resistance. The impact of these sidewall interfaces needs to be explored in greater depth for practical device engineering, and a related problem is that appropriate characterization techniques are not available. Here, we develop a novel electrothermal method and an intricate microfabricated structure to extract the thermal resistance of a sidewall interface between aluminum and silicon dioxide using suspended nanograting structures. The thermal resistance of the sidewall interface is measured to be ∼16 ± 5 m2 K GW-1, which is twice as large as the equivalent horizontal planar interface comprising the same materials in the experimental sample. The rough sidewall interfaces are observed using transmission electron micrographs, which may be more extensive than at interfaces in the substrate plan in the same nanostructure. A model based on a two-dimensional sinusoidal surface estimates the impact of the roughness on thermal resistance to be ∼2 m2 K GW-1. The large disparity between the model predictions and the experiments is attributed to the incomplete contact at the Al-SiO2 sidewall interfaces, inferred by observation of underetching of the silicon substrate below the sidewall opening. This study suggests that sidewall interfaces must be considered separately from planar interfaces in thermal analysis for nanostructured systems.

10.
ACS Appl Mater Interfaces ; 9(48): 42067-42074, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29119783

RESUMEN

Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm2 K W-1, over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

11.
Sci Rep ; 7(1): 6233, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740212

RESUMEN

Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed "line-of-sight" (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m-1 K-1 for straight beam to ~31 W m-1 K-1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.

12.
ACS Appl Mater Interfaces ; 7(34): 19251-9, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26284489

RESUMEN

The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA