Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 42(5): 983-986, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248348

RESUMEN

Rigorous electromagnetic computations required for the calculation of high-resolution monochromatic bulk integral optical properties of irregular atmospheric particles are onerous in memory and in time requirements. Here, it is shown that from a set of 145 monochromatic bulk integral ice optical properties, it is possible to reduce the set to eight hinge wavelengths by using the method of principal component analysis (PCA) regression. From the eight hinge wavelengths, the full set can be reconstructed to within root mean square errors of ≪1%. To obtain optimal reconstruction, the training set must cover as wide a range of parameter space as possible. Rigorous electromagnetic methods can now be routinely applied to represent accurately the integral optical properties of atmospheric particles in climate models.

2.
Appl Opt ; 52(4): 640-52, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23385901

RESUMEN

The single-scattering properties of concave fractal polyhedra are investigated, with particle size parameters ranging from the Rayleigh to geometric-optics regimes. Two fractal shape parameters, irregularity and aspect ratio, are used to iteratively construct "generations" of irregular fractal particles. The pseudospectral time-domain (PSTD) method and the improved geometric-optics method (IGOM) are combined to compute the single-scattering properties of fractal particles over the range of size parameters. The effects of fractal generation, irregularity, and aspect ratio on the single-scattering properties of fractals are investigated. The extinction efficiency, absorption efficiency, and asymmetry factor, calculated by the PSTD method for fractal particles, with small-to-moderate size parameters, smoothly bridges the gap between those size parameters and size parameters for which solutions given by the IGOM may be used. Somewhat surprisingly, excellent agreement between values of the phase function of randomly oriented fractal particles calculated by the two numerical methods is found, not only for large particles, but in fact extends as far down in equivalent-projected-area size parameters as 25. The agreement in the case of other nonzero phase matrix elements is not as good at so small a size. Furthermore, the numerical results of ensemble-averaged phase matrix elements of a single fractal realization are compared with dust particle measurements, and good agreement is found by using the fractal particle model to represent data from a study of feldspar aerosols.

3.
Appl Opt ; 42(15): 2811-8, 2003 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-12777019

RESUMEN

The scalar optical properties (extinction coefficient, mass extinction coefficient, single-scattering albedo, and asymmetry parameter) of a distribution of randomly oriented ice aggregates are simulated generally to well within 4% accuracy by use of a size-shape distribution of randomly oriented circular ice cylinders at wavelengths in the terrestrial window region. The single-scattering properties of the ice aggregates are calculated over the whole size distribution function by the finite-difference time-domain and improved geometric optics methods. The single-scattering properties of the size-shape distribution of circular ice cylinders are calculated by the T-matrix method supplemented by scattering solutions obtained from complex-angular-momentum theory. Moreover, radiative-transfer studies demonstrate that the maximum error in brightness temperature space when the size-shape distribution of circular ice cylinders is used to represent scattering from ice aggregates is only approximately 0.4 K The methodology presented should find wide applicability in remote sensing of ice cloud and parameterization of cirrus cloud scalar optical properties in climate models.

4.
Appl Opt ; 42(15): 2653-64, 2003 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-12777000

RESUMEN

We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal columns in computing the optical properties of pristine ice crystals at infrared (8-12-microm) wavelengths. The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain method to compute the optical properties of hexagonal ice columns smaller than 40 microm. For hexagonal columns larger than 40 microm we employ an improved geometric optics method and a stretched scattering potential technique developed in previous studies to calculate the phase function and the extinction (or absorption) efficiency, respectively. The differences between the results for circular cylinders and hexagonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared (8-12-microm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggregates cannot be well approximated by those of individual finite columns or cylinders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA