RESUMEN
First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cuerpo Calloso/citología , Proteínas de Unión al ADN/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Represoras/biosíntesis , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/biosíntesis , Agenesia del Cuerpo Calloso/embriología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Animales , Axones/ultraestructura , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/deficiencia , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Modelos Genéticos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Nucleosomas/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
The mammalian target of rapamycin (mTOR) regulates cell growth in response to various intracellular and extracellular signals. It assembles into two multiprotein complexes: the rapamycin-sensitive mTOR complex 1 (mTORC1) and the rapamycin-insensitive mTORC2. In this study, we inactivated mTORC1 in mice by deleting the gene encoding raptor in the progenitors of the developing CNS. Mice are born but never feed and die within a few hours. The brains deficient for raptor show a microcephaly starting at E17.5 that is the consequence of a reduced cell number and cell size. Changes in cell cycle length during late cortical development and increased cell death both contribute to the reduction in cell number. Neurospheres derived from raptor-deficient brains are smaller, and differentiation of neural progenitors into glia but not into neurons is inhibited. The differentiation defect is paralleled by decreased Stat3 signaling, which is a target of mTORC1 and has been implicated in gliogenesis. Together, our results show that postnatal survival, overall brain growth, and specific aspects of brain development critically depend on mTORC1 function.
Asunto(s)
Encéfalo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Microcefalia/genética , Microcefalia/patología , Neuroglía/patología , Proteínas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/genética , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Bromodesoxiuridina/metabolismo , Caspasa 3/metabolismo , Ciclo Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Microcefalia/mortalidad , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Proteínas/genética , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismoRESUMEN
Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100ß+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100ß+ astrocytes remains unchanged in the mutant.
Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ciclina D1/biosíntesis , Neuroglía/metabolismo , Células Madre/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , División Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Femenino , Masculino , Ratones , Ratones NoqueadosRESUMEN
Peripheral myelin formation depends on axonal signals that tightly control proliferation and differentiation of the associated Schwann cells. Here we demonstrate that the molecular program controlling proliferation of Schwann cells switches at birth. We have analyzed the requirements for three members of the cyclin-dependent kinase (cdk) family in Schwann cells using cdk-deficient mice. Mice lacking cdk4 showed a drastic decrease in the proliferation rate of Schwann cells at postnatal days 2 and 5, but proliferation was unaffected at embryonic day 18. In contrast, ablation of cdk2 and cdk6 had no significant influence on postnatal Schwann cell proliferation. Taken together, these findings indicate that postnatal Schwann cell proliferation is uniquely controlled by cdk4. Despite the lack of the postnatal wave of Schwann cell proliferation, axons were normally myelinated in adult cdk4-deficient sciatic nerves. Following nerve injury, Schwann cells lacking cdk4 were unable to re-enter the cell cycle, while Schwann cells deficient in cdk2 or cdk6 displayed proliferation rates comparable to controls. We did not observe compensatory effects such as elevated cdk4 levels in uninjured or injured nerves of cdk2 or cdk6-deficient mice. Our data demonstrate that prenatal and postnatal Schwann cell proliferation are driven by distinct molecular cues, and that postnatal proliferation is not a prerequisite for the generation of Schwann cell numbers adequate for correct myelination.
Asunto(s)
Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Células de Schwann/fisiología , Neuropatía Ciática/enzimología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Ciclo Celular/fisiología , Células Cultivadas , Quinasa 2 Dependiente de la Ciclina/deficiencia , Quinasa 4 Dependiente de la Ciclina/deficiencia , Quinasa 6 Dependiente de la Ciclina/deficiencia , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Noqueados , Ratas , Degeneración Walleriana/metabolismoRESUMEN
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 660-670, 2018.
Asunto(s)
Proliferación Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/deficiencia , Quinasa 6 Dependiente de la Ciclina/deficiencia , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Células Madre/metabolismo , Animales , Recuento de Células , Ciclo Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Ratones Noqueados , Prosencéfalo/patología , Células Madre/patologíaRESUMEN
Like many POU domain proteins, Oct-6 plays important roles during vertebrate development. In accord with its function as a transcriptional regulator during neurogenesis and myelination, Oct-6 is predominantly found in the nucleus. Nuclear import is mediated by a nuclear localization signal at the N-terminal end of the POU homeodomain. Here we show, that Oct-6 in addition contains a nuclear export signal so that Oct-6 is able to shuttle constantly between nucleus and cytoplasm. This nuclear export signal is also localized in the POU homeodomain as part of helix 2 and the connecting loop to DNA recognition helix 3. It conforms to the consensus of hydrophobic leucine-rich export sequences and mediates export from the nucleus via CRM1/Exp1. Several amino acid substitutions or insertions that inactivate this nuclear export sequence, reduce DNA-binding of Oct-6 to its octamer recognition element slighty, but interfere strongly with Oct-6-dependent transcriptional activation, thus arguing that nuclear export and nucleocytoplasmic shuttling are essential aspects of Oct-6 function. Importantly, the nuclear export signal identified for Oct-6 is conserved in most, if not all other vertebrate POU proteins. Nuclear export might therefore be of general relevance for POU protein function throughout development.
Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Humanos , Carioferinas/metabolismo , Leucina/análisis , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Activación Transcripcional , Proteína Exportina 1RESUMEN
In the developing forebrain, neural stem and progenitor cells generate a large variety of neurons with specific functions in the mature cortex. A central issue is to understand the roles of transcriptional networks and regulatory pathways that control these complex developmental processes. The proto-oncogene Ski is a transcriptional regulator linked to the human 1p36 deletion syndrome, which involves a set of phenotypes including nervous system defects. Ski shows a dynamic expression pattern during cortical development and, accordingly, the phenotype of Ski-deficient cortices is complex, involving altered cell cycle characteristics of neural progenitors, disturbed timing of neurogenesis and mis-specification of projection neurons. Ski is likely to play a role in various pathways by virtue of its ability to interact with a range of signaling molecules, thereby modulating transcriptional activity of corresponding target genes. Ski regulates proliferation and differentiation of various cell types, and more recent data from my laboratory demonstrates that Ski is also involved in the specification of cortical projection neurons. This Point-of-View elucidates the role of Ski as an essential linker between sequence-specific transcription factors and non-DNA binding cofactors with chromatin modifying activities. In particular, it puts forward the hypothesis that the diverse functions of Ski as a co-repressor might be related to its association with distinct HDAC-complexes.