Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675547

RESUMEN

Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: 'Halbhoner Grüner Krauser', 'Scarlet', and 'Nero di Toscana'. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in 'Nero di Toscana'. Extracts of spontaneously fermented 'Scarlet' (SS) and 'Nero di Toscana' (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1ß and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods.


Asunto(s)
Antioxidantes , Brassica , Fermentación , Fenoles , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Fenoles/farmacología , Fenoles/análisis , Fenoles/química , Células CACO-2 , Brassica/química , Brassica/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de la Colinesterasa/farmacología , Cromatografía Líquida de Alta Presión , Polifenoles/farmacología , Polifenoles/química
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768580

RESUMEN

Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.


Asunto(s)
Trastorno Depresivo , Fármacos Neuroprotectores , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Polifenoles/farmacología , Polifenoles/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Trastorno Depresivo/tratamiento farmacológico
3.
Molecules ; 29(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202817

RESUMEN

Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Hidroxibenzoatos , Parmeliaceae , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Monofenol Monooxigenasa
4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563248

RESUMEN

The aim of the study was to present the fingerprint of different Lepidium peruvianum tuber extracts showing glucosinolates-containing substances possibly playing an important role in preventinting dementia and other memory disorders. Different phenotypes of Lepidium peruvianum (Brassicaceae) tubers were analysed for their glucosinolate profile using a liquid chromatograph coupled with mass spectrometer (HPLC-ESI-QTOF-MS/MS platform). Qualitative analysis in 50% ethanolic extracts confirmed the presence of ten compounds: aliphatic, indolyl, and aromatic glucosinolates, with glucotropaeolin being the leading one, detected at levels between 0-1.57% depending on phenotype, size, processing, and collection site. The PCA analysis showed important variations in glucosinolate content between the samples and different ratios of the detected compounds. Applied in vitro activity tests confirmed inhibitory properties of extracts and single glucosinolates against acetylcholinesterase (AChE) (15.3-28.9% for the extracts and 55.95-57.60% for individual compounds) and butyrylcholinesterase (BuChE) (71.3-77.2% for the extracts and 36.2-39.9% for individual compounds). The molecular basis for the activity of glucosinolates was explained through molecular docking studies showing that the tested metabolites interacted with tryptophan and histidine residues of the enzymes, most likely blocking their active catalytic side. Based on the obtained results and described mechanism of action, it could be concluded that glucosinolates exhibit inhibitory properties against two cholinesterases present in the synaptic cleft, which indicates that selected phenotypes of L. peruvianum tubers cultivated under well-defined environmental and ecological conditions may present a valuable plant material to be considered for the development of therapeutic products with memory-stimulating properties.


Asunto(s)
Lepidium , Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Glucosinolatos/análisis , Lepidium/química , Simulación del Acoplamiento Molecular , Fenotipo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem
5.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164271

RESUMEN

The biological activity of an in vitro digested infusion of Epilobium angustifolium (fireweed) was examined in a model system of intestinal epithelial and colon cancer tissues. The content of selected phenolic compounds in the digested aqueous extract of fireweed was determined using HPLC-ESI-QTOF-MS/MS. Biological activity was examined using the human colon adenocarcinoma cell lines HT-29 and CaCo-2 and the human colon epithelial cell line CCD 841 CoTr. Cytotoxicity was assessed by an MTT assay, a Neutral Red uptake assay, May-Grünwald-Giemsa staining, and a label-free Electric Cell-Substrate Impedance Sensing cytotoxicity assay. The effect of the infusion on the growth of selected intestinal bacteria was also examined. The extract inhibited the growth of intestinal cancer cells HT-29. This effect can be attributed to the activity of quercetin and kaempferol, which were the most abundant phenolic compounds found in the extract after in vitro digestion. The cytotoxicity of the fireweed infusion was dose-dependent. The highest decrease in proliferation (by almost 80%) compared to the control was observed in HT-29 line treated with the extract at a concentration of 250 µg/mL. The fireweed infusion did not affect the growth of beneficial intestinal bacteria, but it did significantly inhibit E. coli. The cytotoxic effect of the fireweed extract indicates that it does not lose its biological activity after in vitro digestion. It can be concluded that the fireweed infusion has the potential to be used as a supporting agent in colon cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/química , Epilobium/química , Extractos Vegetales/química , Polifenoles/química , Antineoplásicos Fitogénicos/farmacología , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Células HT29 , Humanos , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología
6.
Plant Foods Hum Nutr ; 75(1): 30-32, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31925635

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized, among others by abnormal levels of acetyl- and butyrylcholinesterase in the brain. In this study, 47 types of Polish honeys were examined (using colorimetric method) as a source of acetyl- and butyrylcholinesterase inhibitors. The highest potential for AChE inhibition was observed in the case of buckwheat honey (39.51% inhibition), while multi-floral honey showed the highest capacity for BChE inhibition (39.76%). Our study revealed that honeys can be a rich source of cholinesterase inhibitors and therefore may play a role in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Miel , Enfermedades Neurodegenerativas , Acetilcolinesterasa , Inhibidores de la Colinesterasa , Humanos
7.
Curr Alzheimer Res ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38523524

RESUMEN

BACKGROUND: As the cholinesterase theory is a prominent hypothesis underlying our current understanding of Alzheimer's disease (AD), the goal of this study was to compose functional vegan lunchtime soups with potential health benefits in the prevention of AD (in the context of cholinesterase inhibition). MATERIALS AND METHODS: The potential of 36 edible plant raw materials in terms of acetyl- and butyrylcholinesterase inhibition was investigated using a 96-well microplate reader. The most promising ingredients were combined to obtain 18 palatable vegetable soup recipes with 6 dominant flavor, appearance, and aroma variants. To shortlist candidates for in-depth analysis and potential consideration in industrial production, our team performed a sensory analysis of the soups. RESULTS: The white boletus soup exhibited the highest potential for cholinesterase inhibition, further bolstered by the inclusion of other ingredients known for their elevated capacity to inhibit both AChE and BChE. Ingredients such as blackthorn (Prunus spinosa), garlic, and white potato contributed significantly to this inhibitory effect (nearly 100% of AChE inhibition). Notably, intriguing results were also observed for asparagus soup, despite the fact that the inhibitory potential of asparagus itself is negligible compared to other raw materials. The success of the asparagus soup lies in the meticulous selection of various ingredients, each contributing to its overall effectiveness. It was observed that mushroom soups scored the highest in this respect, while the team members' response to nettle soup was the least favorable. CONCLUSION: The outcomes of our study should serve as a catalyst for further exploration of this important research domain. Our current research focuses on deeper insights into the potential of comprehensive meal options. Furthermore, the synergy/antagonism/non-interaction between respective soup ingredients as well as elements of individual soups' chemical composition is a very interesting topic currently under our intensive scientific investigation.

8.
Food Res Int ; 189: 114509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876586

RESUMEN

The presence of nanoparticle fractions (<100 nm, NPs) in the food additive TiO2 (E171) rises concerns about its potential harmful impact on human health. The knowledge about the interaction of TiO2 NPs with food components is limited to proteins or polyphenols. The present paper is the first to report on interactions between TiO2 NPs and high molecular pectins that form gels in boluses and are remain nearly intact during digestion until they reach the colon. Direct interactions were studied using Fourier Transform Infrared Spectroscopy while indirect ones were monitored by measuring the "absorption" of TiO2 using a 0.2 microfiltration membrane, during in vitro digestion in a model of the gastro-intestinal tract. The FT-IR spectra registered for pectin-TiO2 NPs solutions confirmed changes in band intensities at 1020, 1100, 1610, and 1740 cm-1, suggesting interactions taking place mainly via the COO- groups. Furthermore, the I(1020)/I(1100) ratio was decreased (C-O stretching vibrations), suggesting partial blocking of the skeletal vibrations caused by interactions between pectin and TiO2. The modelled in vitro digestions confirmed that the "availability" of Ti was reduced when TiO2 NPs were combined with pectin, as compared to TiO2 NPs "digested" alone.


Asunto(s)
Tracto Gastrointestinal , Nanopartículas , Pectinas , Titanio , Titanio/química , Pectinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Digestión , Humanos , Modelos Biológicos , Aditivos Alimentarios/química
9.
Nutrients ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892691

RESUMEN

In the present study, the effect of the addition of quince and collagen type I and III to dessert chocolate on its functional properties was determined. The study evaluated the antioxidant potential of the tested formulations using the FRAP method and the linoleic acid oxidation test and beta-carotene bleaching test. The tested samples were also evaluated for inhibitory activity against enzymes important in preventive health (inflammation and neurodegenerative disorders) namely: AChE, BChE, GR, GPx, COX, and SOD. The addition of quince and collagen to the chocolate samples resulted in higher activity compared to the control sample, as indicated by the FRAP test. The experiment highlighted the impact of including quince fruit on the antioxidant activity of the chocolate samples. Interestingly, merely increasing the quince fruit amount did not consistently enhance antioxidant potential. Specifically, chocolate samples with a lower proportion of quince fruit (2 g/100 g) exhibited greater antioxidant activity when supplemented with collagen I. Conversely, in samples with higher quince percentages (3 g and 4 g), those enriched with collagen III showed higher antioxidant activity. Similar correlations were observed in the linoleic acid oxidation test. Notably, samples containing 3 g and 4 g of quince and type III collagen demonstrated statistically similar highest antioxidant properties. Regardless of the collagen type used, there was no observed increase in activity towards the tested enzymes for samples with the lowest percentage of quince fruit. Both collagen types exhibited the highest activity in the inhibition assay against acetylcholinesterase and butyrylcholinesterase when combined with 3 g and 4 g of quince. Overall, the experimental incorporation of both fruit and collagen enhanced the chocolates' activity. Similarly to the antioxidant activity findings, chocolates with lower quince fruit quantities showed increased activity when supplemented with collagen III, while those with higher quince content (3 g and 4 g) displayed higher activity with collagen I. Bitter chocolate by itself is an attractive food product, rich in many bioactive compounds. However, enriching it with other attractive raw materials can make its properties and taste even more attractive.


Asunto(s)
Antioxidantes , Chocolate , Rosaceae , Chocolate/análisis , Antioxidantes/farmacología , Animales , Rosaceae/química , Colágeno , Inflamación/prevención & control , Frutas/química , Porcinos , Oxidación-Reducción/efectos de los fármacos
10.
Nutrients ; 16(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474808

RESUMEN

Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.


Asunto(s)
Neoplasias Endometriales , Microbioma Gastrointestinal , Neoplasias de los Genitales Femeninos , Femenino , Humanos , Microbioma Gastrointestinal/fisiología , Polifenoles/farmacología , Neoplasias de los Genitales Femeninos/complicaciones , Disbiosis/complicaciones , Prebióticos
11.
Food Res Int ; 164: 112303, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737907

RESUMEN

Despite that the applicability of Cu-based engineered nanoparticles (ENPs) as an antibacterial and antifungal agent for plant protection has been studied widely, little is known about their role in the improvement of crop yield and quality. Here, a full life study was performed to investigate the nutritional quality and bioactivity of barley grains under foliar application of nano-/microparticulate (nano-Cu, nano-CuO, micro-Cu) and ionic Cu compounds (CuSO4, CuEDTA). Hordeum vulgaris L. plants were sprayed with Cu compounds at 500 mg/L during the end of tillering and the beginning of heading. Yield, mineral composition, protein and dietary content, antioxidant (phenolic, anthocyanin, flavonoid, tannin, flavanol) content and antioxidant capacity of barley grain were evaluated. Grain yield was unaffected by all treatments. Only nano-Cu and ionic compounds enhanced Cu accumulation in grain: 2-fold increase was observed compared to the control (2.6 µg/kg). Nano-Cu also increased the dietary fiber content by 19.9 %, while no impact of the other treatments was determined. The content of phenolic compounds, the main group of antioxidants, remained unchanged after Cu supply. In general, for all Cu treatment, antiradical and reducing abilities were decreased or were at the similar level in relation to the control. On the other hand, chelating power in grain extracts was 2-4 times higher under nano-Cu/nano-CuO/micro-Cu than in the untreated sample, while the ionic compounds had no impact on the chelating indicator. Our results demonstrated that more favorable effects were triggered by nano-Cu than CuSO4 or CuEDTA on the tested indicators of barley grain, despite that both compounds resulted in similar superior Cu acquisition. It suggests that nano-Cu may be considered as an alternative agent to be used as economic and traditional fertilizers.


Asunto(s)
Antioxidantes , Hordeum , Antioxidantes/farmacología , Antioxidantes/metabolismo , Minerales/metabolismo , Grano Comestible/metabolismo , Fenotipo
12.
Nutrients ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242249

RESUMEN

Butyrylcholinesterase (BChE) is a major enzyme from the alpha-glycoprotein family that catalyzes the hydrolysis of neurotransmitter acetylcholine (ACh), lowering the concentration of ACh in the nervous system, which could cause aggravation of Alzheimer's disease (AD). In select pathological conditions, it is beneficial to reduce the activity of this enzyme. The aim of this study was to evaluate the degree of BChE inhibition by coffee extracts fractionated into mono- and diesters of caffeic acid/caffeine, digested in vitro in the gastrointestinal tract. The bioactive compounds from coffee showed high affinity for BchE, -30.23--15.28 kJ/mol, and was the highest for the caffeine fraction from the green Arabica extract. The isolated fractions were highly effective in inhibiting BChE activity at all in vitro digestion phases. It has been shown that the fractionation of coffee extracts could be potentially used to obtain high prophylactic or even therapeutic effectiveness against AD.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Cafeína/farmacología , Cafeína/uso terapéutico , Calorimetría , Tracto Gastrointestinal , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular
13.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765139

RESUMEN

The primary purpose of this work was to design and obtain a series of curcuminoid chalcone-NSAID hybrid derivatives. The ester-type hybrid compounds with ibuprofen (i), ketoprofen (ii), and naproxen (iii) were obtained in two ways, using the Claisen-Schmidt reaction and the Steglich esterification reaction. The designed molecules were successfully synthesised, and FT-IR, MS, and NMR spectroscopy confirmed their structures. Moreover, the cytotoxic effect of the sonodynamic therapy and the anti-inflammatory, antioxidant, and anticholinergic properties of some curcuminoid chalcones and curcuminoid chalcones hybrids were evaluated. The curcuminoid chalcone derivatives showed promising neuroprotective activity as sonosensitisers for sonodynamic therapy in the studied cell lines. Additionally, the stability of the ester-type hybrid compounds with promising activity was determined. The RP-HPLC method was used to observe the degradation of the tested compounds. Studies have shown that structural isomers of ester-type hybrid compounds (3ai, 3bi) are characterised by a similar susceptibility to degradation factors, i.e., they are extremely unstable in alkaline environments, very unstable in acidic environments, unstable in neutral environments, practically stable in oxidising environments, and photolabile in solutions and in the solid phase. These compounds maintain adequate stability in environment at pH 1.2 and 6.8, which may make them good candidates for developing formulations for oral administration.

14.
J Trace Elem Med Biol ; 72: 126988, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35561571

RESUMEN

Nanotechnology utilises particles of between 1 and 100 nm in size. In recent years, it has enjoyed widespread application in a variety of areas. However, this has also raised increasing concerns regarding the effects that the use of nanoparticles may have on human health. The nanoparticles of titanium dioxide (TiO2 NPs) are among the most promising nanomaterials and have already found wide use in cosmetics, medicine and, the food industry. A nano-sized (diameter < 100 nm) fraction of TiO2 is present, at a certain percentage, in the E171 ( in the EU) pigment commonly used as an additive in food, whose presence raises particular concerns in terms of its potential negative health impact. The consumption of E171 food additive is increasingly associated with disorders of the intestinal barrier, including intestinal dysbiosis. It may disrupt the normal functions of the gastrointestinal tract (GIT) including: enzymatic digestion of primary nutrients (lipids, proteins, or carbohydrates). The aim of this review is to provide a comprehensive and reliable overview of studies conducted in recent years in terms of the substance's potentially negative impact on human and animal alimentary systems.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Aditivos Alimentarios , Tracto Gastrointestinal , Tamaño de la Partícula , Titanio
15.
Biol Trace Elem Res ; 200(5): 2468-2474, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34297273

RESUMEN

Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs-nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, questions concerning its effect on the gastrointestinal microbiota have been raised. In the present study, we examined interactions between bacteria and TiO2. The study involved six pathogenic/opportunistic bacterial strains and four different-sized TiO2 types: three types of food-grade E171 compounds and TiO2 NPs (21 nm). Each bacterial strain was exposed to four concentrations of TiO2 (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the analyzed strains, caused by the type and concentration of TiO2, were observed. The growth of a majority of the strains was shown to be inhibited after exposure to 300 and 600 mg/L of the food-grade E171 and TiO2 NPs.


Asunto(s)
Nanopartículas , Titanio , Bacterias , Aditivos Alimentarios/farmacología , Titanio/farmacología
16.
Nutrients ; 14(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889933

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterised by low levels of the neurotransmitter (acetylcholine), oxidative stress, and inflammation of the central nervous system. The only currently available form of treatment entails the administration of AChE/BChE (acetylcholinesterase/butyrylcholinesterase) inhibitors to patients diagnosed with the disease. However, AD prevention is possible by administering the correct inhibitors with food. The aim of this study was to examine 19 types of honey in terms of their contents of cholinesterase inhibitors. The inhibition of AChE and BChE relative to the respective honey samples was evaluated using Ellman's colorimetric method, including the "false-positive" effect. The highest potential for AChE inhibition was observed in the case of thyme honey (21.17% inhibition), while goldenrod honey showed the highest capacity for BChE inhibition (33.89%). Our study showed that honeys may provide a rich source of cholinesterase inhibitors and, in this way, play a significant role in AD.


Asunto(s)
Enfermedad de Alzheimer , Miel , Enfermedades Neurodegenerativas , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Humanos
17.
Food Chem ; 392: 133328, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35640426

RESUMEN

In coffee beans, especially roasted, a significant part of hydroxycinnamic acid (HCAs) and their esters chlorogenic acids (CHAs) is attached to melanoidins through both covalent and non-covalent bonds. Bound and, to a greater extent, unbound HCAs, including those released from the polymerized material during digestion, can be pivotal in preventing of many chronic civilization diseases. The aim of the study was to determine the amount of free CHAs and those released from coffee extracts during in vitro digestion in various sections of the gastrointestinal tract, in the presence and absence of probiotic bacteria. The concentration of free CHAs was the lowest in the stomach and achieved the highest levels in the large intestine. Probiotic bacteria caused significant release of CHAs, and in the colon their concentration was the highest. The studies with Caco-2 and HT-29 cell lines showed that digested coffee extracts had cytoprotective potential against tert-BOOH induced oxidative stress.


Asunto(s)
Café , Probióticos , Antioxidantes/análisis , Células CACO-2 , Ácido Clorogénico/análisis , Café/química , Ácidos Cumáricos/química , Digestión , Células HT29 , Calor , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología
18.
Nutrients ; 14(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36079762

RESUMEN

The food colorant E171 (TiO2) containing nano fractions can cause potential health problems. In the presented work, we used a "gastrointestinal tract" model (oral→large intestine) to "digest" a fruit smoothie in the presence of TiO2 nanoparticles and the Lactiplantibacillus plantarum B strain. The TiO2 migration was measured using the microfiltration membrane (0.2 µm; model of "TiO2 bioacessability"). We observed that the addition of the smoothie reduced the Ti content in the microfiltrate (reduced "bioacessability") at the "mouth", "stomach" and "large intestine" stages, probably due to the entrapment of Ti by the smoothie components. A significant decrease in Ti "bioaccessibility" at the "gastric" stage may have resulted from the agglomeration of nanoparticles at a low pH. Additionally, the presence of bacterial cells reduced the "bioaccessibility" at the "large intestine" stage. Microscopic imaging (SEM) revealed clear morphological changes to the bacterial cells in the presence of TiO2 (altered topography, shrunk-deformed cells with collapsed walls due to leakage of the content, indentations). Additionally, TiO2 significantly reduced the growth of the tested bacteria. It can be stated that the interactions (most probably entrapment) of TiO2 in the food matrix can occur during the digestion. This can influence the physicochemical properties, bioavailability and in vivo effect of TiO2. Research aimed at understanding the interactions between TiO2 and food components is in progress.


Asunto(s)
Nanopartículas , Titanio , Disponibilidad Biológica , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Titanio/química , Titanio/metabolismo
19.
Foods ; 11(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36140922

RESUMEN

Cadmium ions (Cd2+) penetrate the blood-brain barrier and can, among other effects, influence intracellular calcium metabolism, leading to neurodegeneration. In the presented work, we estimated the effect of Cd2+ on the expression of calretinin in the neurons of the rat hippocampus and analyzed the reverse effect of freshly pressed beetroot/carrot juice in this context. In the 12-week lasting experiment, 32 8-week-old male Wistar rats were divided into four experimental groups (n = 8): the control group (C) received pure tap water; the Cd group (Cd)-received Cd2+ dissolved in tap water (5 mg Cd2+/kg b.w.); and two groups received beetroot/carrot juice: the BCJ group was administered only juice, and the Cd + BCJ group received juice with the addition of Cd2+ (5 mg Cd2+/kg b.w.). The exposition to low doses of Cd2+ caused a significant decrease in calretinin-immunoreactive (Cr-IR) neurons compared to the non-exposed groups. Moreover, the addition of Cd2+ to tap water reduced the numbers and length of Cr-IR nerve fibers. The negative effect of Cd2+ was significantly attenuated by the simultaneous supplementation of beetroot/carrot juice (Cd + BCJ). The study showed that the bioactive compounds in the beetroot/carrot juice can modulate Ca2+ levels in neurons, and thus, potentially act as a neuroprotective factor against neuronal damage.

20.
Sci Total Environ ; 843: 157108, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779726

RESUMEN

Excessive plastic use has inevitably led to its consumption by organisms, including humans. It is estimated that humans consume 20 kg of plastic during their lifetime. The presence of microplastics in the human body can carry serious health risks, such as biological reactions e.g. inflammation, genotoxicity, oxidative stress, apoptosis, as well toxic compounds leaching of unbound chemicals/monomers, free radicals or adsorbed organic pollutants, which mainly depend on the properties of the ingested plastic. Plastics are exposed to different substances (e.g., enzymes and acids) in the digestive system, which potentially affects their properties and structure. By stimulating the human digestive system and applying a set of advanced analytical tools, we showed that the surface of polystyrene and high-density polyethylene plastics frequently in contact with food undergoes fundamental changes during digestion. This results in the appearance of additional functional groups, and consequent increase in the plastic adsorption capacity for hydrophobic ionic compounds (such as triclosan and diclofenac) while reducing its adsorption capacity for hydrophobic non-ionic compounds (such as phenanthrene). Micro- and nanostructures that formed on the flat surface of the plastics after digestion were identified using scanning electron microscopy. These structures became defragmented and detached due to mechanical action, increasing micro- and nanoplastics in the environment. Due to their size, the release of plastic nanostructures after digestion can become an "accidental food source" for a wider group of aquatic organisms and ultimately for humans as the last link in the food chain. This, combined with improved adsorption capacity of digested plastics to hydrophobic ionic pollutants, can pose a serious threat to the environment including human health and safety.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Digestión , Tracto Gastrointestinal , Humanos , Plásticos/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA