Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(22): 8905-8913, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771097

RESUMEN

Chemotherapeutic anthracyclines, like doxorubicin (DOX), are drugs endowed with cytostatic activity and are widely used in antitumor therapy. Their molecular mechanism of action involves the formation of a stable anthracycline-DNA complex, which prevents cell division and results in cell death. It is known that elevated DOX concentrations induce DNA chain loops and overlaps. Here, for the first time, tip-enhanced Raman scattering was used to identify and localize intercalated DOX in isolated double-stranded calf thymus DNA, and the correlated near-field spectroscopic and morphologic experiments locate the DOX molecules in the DNA and provide further information regarding specific DOX-nucleobase interactions. Thus, the study provides a tool specifically for identifying intercalation markers and generally analyzing drug-DNA interactions. The structure of such complexes down to the molecular level provides mechanistic information about cytotoxicity and the development of potential anticancer drugs.


Asunto(s)
ADN , Doxorrubicina , Espectrometría Raman , Doxorrubicina/farmacología , Doxorrubicina/química , ADN/química , Animales , Bovinos , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química
2.
Analyst ; 149(9): 2697-2708, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38506099

RESUMEN

In this paper, we present Raman imaging as a non-invasive approach for studying changes in mitochondrial metabolism caused by cardiolipin-cytochrome c interactions. We investigated the effect of mitochondrial dysregulation on cardiolipin (CL) and cytochrome c (Cyt c) interactions for a brain cancer cell line (U-87 MG). Mitochondrial metabolism was monitored by checking the intensities of the Raman bands at 750 cm-1, 1126 cm-1, 1310 cm-1, 1337 cm-1, 1444 cm-1 and 1584 cm-1. The presented results indicate that under pathological conditions, the content and redox status of Cyt c in mitochondria can be used as a Raman marker to characterize changes in cellular metabolism. This work provides evidence that cardiolipin-cytochrome c interactions are crucial for mitochondrial energy homeostasis by controlling the redox status of Cyt c in the electron transport chain, switching from disabling Cyt c reduction and enabling peroxidase activity. This paper provides experimental support for the hypothesis of how cardiolipin-cytochrome c interactions regulate electron transfer in the respiratory chain, apoptosis and mROS production in mitochondria.


Asunto(s)
Neoplasias Encefálicas , Cardiolipinas , Citocromos c , Glioblastoma , Mitocondrias , Espectrometría Raman , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Humanos , Mitocondrias/metabolismo , Línea Celular Tumoral , Espectrometría Raman/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Oxidación-Reducción
3.
Analyst ; 149(2): 571-581, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099606

RESUMEN

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with chromosome translocations like KMT2A gene rearrangement (KMT2A-r) and BCR-ABL1 fusion gene have been recognized as crucial drivers in both BCP-ALL leukemogenesis and treatment management. Standard diagnostic protocols for proliferative diseases of the hematopoietic system, like KMT2A-r-ALL, are genetically based and strongly molecularly oriented. Therefore, an efficient diagnostic procedure requires not only experienced and multidisciplinary laboratory staff but also considerable instrumentation and material costs. In recent years, a Raman spectroscopy method has been increasingly used to detect subtle chemical changes in individual cells resulting from stress or disease. Therefore, the objective of this study was to identify Raman signatures for the molecular subtypes and to develop a classification method based on the unique spectroscopic profile of in vitro models that represent specific aberrations aimed at KMT2A-r (RS4;11, and SEM) and the BCR-ABL1 fusion gene (SUP-B15, BV-173, and SD-1). Data analysis was based on chemometric methods, i.e. principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM). The PCA-based multivariate model was used for pattern recognition of each investigated group of cells while PLS-DA and SVM were used to build models for the discrimination of spectra from the studied BCP-ALL molecular subtypes. The results showed that the studied molecular subtypes of ALL have characteristic spectroscopic profiles reflecting their peculiar biochemical state. The content of lipids (1600 cm-1), nucleic acids (789 cm-1), and haemoproteins (754, 1130, and 1315 cm-1), which are crucial in cell metabolism, was indicated as the main source of differentiation between subtypes. Identification of spectroscopic markers of cells with BCR-ABL1 or KMT2A-r may be useful in pharmacological studies to monitor the effectiveness of chemotherapy and further to understand differences in molecular responses between leukemia primary cells and cell lines.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Espectrometría Raman/métodos
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649221

RESUMEN

Embryonic diapause (ED) is a temporary arrest of an embryo at the blastocyst stage when it waits for the uterine receptivity signal to implant. ED used by over 100 species may also occur in normally "nondiapausing" mammals when the uterine receptivity signal is blocked or delayed. A large number of lipid droplets (LDs) are stored throughout the preimplantation embryo development, but the amount of lipids varies greatly across different mammalian species. Yet, the role of LDs in the mammalian egg and embryo remains unknown. Here, using a mouse model, we provide evidence that LDs play a crucial role in maintaining ED. By mechanical removal of LDs from zygotes, we demonstrated that delipidated embryos are unable to survive during ED. LDs are not essential for normal prompt implantation, without ED. We further demonstrated that with the progression of ED, the amount of intracellular lipid reduces, and composition changes. This decrease in lipid is caused by a switch from carbohydrate metabolism to lipid catabolism in diapausing blastocysts, which also exhibit increased release of exosomes reflecting elevated embryonic signaling to the mother. We have also shown that presence of LDs in the oocytes of various mammals positively corelates with their species-specific length of diapause. Our results reveal the functional role of LDs in embryonic development. These results can help to develop diagnostic techniques and treatment of recurrent implantation failure and will likely ignite further studies in developmental biology and reproductive medicine fields.


Asunto(s)
Blastocisto/metabolismo , Diapausa , Gotas Lipídicas/metabolismo , Cigoto/metabolismo , Animales , Femenino , Ratones
5.
Angew Chem Int Ed Engl ; 63(21): e202402449, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38517385

RESUMEN

Carotenoids tend to form supramolecular aggregates via non-covalent interactions where the chirality of individual molecules is amplified to the macroscopic level. We show that this can also be achieved for non-chiral carotenoid monomers interacting with polysaccharides. The chirality induction in canthaxanthin (CAX), caused by heparin (HP) and hyaluronic acid (HA), was monitored by chiroptical spectroscopy. Electronic circular dichroism (ECD) and Raman optical activity (ROA) spectra indicated the presence of multiple carotenoid formations, such as H- and J-type aggregates. This is consistent with molecular dynamics (MD) and density functional theory (DFT) simulations of the supramolecular structures and their spectroscopic response.

6.
Cell Mol Life Sci ; 79(12): 593, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380212

RESUMEN

Endothelial cells (EC) in vivo buffer and regulate the transfer of plasma fatty acid (FA) to the underlying tissues. We hypothesize that inflammation could alter the functionality of the EC, i.e., their capacity and uptake of different FA. The aim of this work is to verify the functionality of inflamed cells by analyzing their ability to uptake and accumulate exogenous saturated FA. Control and inflammatory human microvascular endothelial cells stimulated in vitro with two deuterium-labeled saturated FA (D-FA), i.e., palmitic (D31-PA) and myristic (D27-MA) acids. Cells were measured both by spontaneous and stimulated Raman imaging to extract detailed information about uptaken FA, whereas coherent anti-Stokes Raman scattering and fluorescence imaging showed the global content of FA in cells. Additionally, we employed atomic force microscopy to obtain a morphological image of the cells. The results indicate that the uptake of D-FA in inflamed cells is dependent on their concentration and type. Cells accumulated D-FA when treated with a low concentration, and the effect was more pronounced for D27-MA, in normal cells, but even more so, in inflamed cells. In the case of D31-PA, a slightly increased uptake was observed for inflamed cells when administered at higher concentration. The results provide a better understanding of the EC inflammation and indicate the impact of the pathological state of the EC on their capacity to buffer fat. All the microscopic methods used showed complementarity in the analysis of FA uptake by EC, but each method recognized this process from a different perspective.


Asunto(s)
Ácidos Grasos , Microscopía , Humanos , Ácidos Grasos/farmacología , Microscopía/métodos , Células Endoteliales , Endotelio , Inflamación
7.
Mikrochim Acta ; 190(8): 332, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500736

RESUMEN

Astaxanthin (AXT) is a lipophilic antioxidant and anti-inflammatory natural pigment whose cellular uptake and bioavailability could be improved via liposomal encapsulation. Endothelial cells (EC) line the lumen of all blood vessels and are tasked with multiple roles toward maintaining cardiovascular homeostasis. Endothelial dysfunction is linked to the development of many diseases and is closely interconnected with oxidative stress and vascular inflammation. The uptake of free and liposomal AXT into EC was investigated using Raman and fluorescence microscopies. AXT was either encapsulated in neutral or cationic liposomes. Enhanced uptake and anti-inflammatory effects of liposomal AXT were observed. The anti-inflammatory effects of liposomal AXT were especially prominent in reducing EC lipid unsaturation, lowering numbers of lipid droplets (LDs), and decreasing intercellular adhesion molecule 1 (ICAM-1) overexpression, which is considered a well-known marker for endothelial inflammation. These findings highlight the benefits of AXT liposomal encapsulation on EC and the applicability of Raman imaging to investigate such effects.


Asunto(s)
Células Endoteliales , Liposomas , Humanos , Inflamación/tratamiento farmacológico , Imagen Óptica
8.
Cell Mol Life Sci ; 78(7): 3477-3484, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33289850

RESUMEN

Here we report a new Raman probe for cellular studies on lipids detection and distribution. It is (3S, 3'S)-astaxanthin (AXT), a natural xanthophyll of hydrophobic properties and high solubility in lipids. It contains a chromophore group, a long polyene chain of eleven conjugated C=C bonds including two in the terminal rings, absorbing light in the visible range that coincides with the excitation of lasers commonly used in Raman spectroscopy for studying of biological samples. Depending on the laser, resonance (excitation in the visible range) or pre-resonance (the near infrared range) Raman spectrum of astaxanthin is dominated by bands at ca. 1008, 1158, and 1520 cm-1 that now can be also a marker of lipids distribution in the cells. We showed that AXT accumulates in lipidic structures of endothelial cells in time-dependent manner that provides possibility to visualize e.g. endoplasmic reticulum, as well as nuclear envelope. As a non-toxic reporter, it has a potential in the future studies on e.g. nucleus membranes damage in live cells in a very short measuring time.


Asunto(s)
Antiinflamatorios/metabolismo , Técnicas Biosensibles/métodos , Endotelio Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Lípidos/química , Espectrometría Raman/métodos , Antiinflamatorios/administración & dosificación , Antiinflamatorios/análisis , Endotelio Vascular/citología , Humanos , Estructura Molecular , Orgánulos/metabolismo , Xantófilas/administración & dosificación , Xantófilas/análisis , Xantófilas/metabolismo
9.
Cell Mol Life Sci ; 79(1): 52, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936035

RESUMEN

Eosinophils (Eos) play an important role in the immune system's response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1ß, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.


Asunto(s)
Biomarcadores/metabolismo , Eosinófilos/metabolismo , Inflamación/inmunología , Células Cultivadas , Eosinófilos/citología , Humanos
10.
Chemphyschem ; 22(20): 2115-2127, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34310822

RESUMEN

A series of 4-halogeno aniline derivatives was studied employing combined theoretical and experimental methods (i. e. crystal structure analysis and vibrational spectroscopies). This simplified model system was selected to shed light on the impact of fluorine substitution on the formation of noncovalent interactions such as halogen bonds (XBs) and hydrogen bonds (HBs), which are key interactions in fluorinated/halogenated drug-protein complex formation. Comparative analysis of three previously reported and five newly determined crystal structures indicated that, in most cases, 2-fluoro and 2,6-difluoro substitution of 4-X anilines increases the ability of adjacent amine to form strong N-H⋅⋅⋅N HBs. Additionally, fluorine substituents in the difluorinated derivatives are competitive and attractive HB and XB acceptors and increase the probability of halogen-halogen contacts. A peculiar observation was made for 4-iodoaniline and 2,6-difluoro-4-iodoaniline, which form distinct interaction patterns compared to the corresponding 4-Cl and 4-Br analogs. The observed intramolecular N-H⋅⋅⋅F interactions lead to additional NH bands in the FT-IR spectra.

11.
Phys Chem Chem Phys ; 23(40): 23336-23340, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34633399

RESUMEN

Intermolecular interactions sensitive to chirality occur in many biological events. We report a complex formation between a versatile vanadium-based probe and a chiral co-ligand monitored via the combination of electronic circular dichroism (ECD) and Raman scattering. This "ECD-Raman" effect was discovered relatively recently and can be measured using a Raman optical activity (ROA) spectrometer. Simulated spectra based on experimental ECD and degree of circularity (DOC) values agree with the observed ones. Sensitive recognition of the chiral enantiopure co-ligand is thus enabled by a combination of resonance of the excitation light with the diastereoisomeric complex, co-ligand complexation, circular dichroism, and polarized Raman scattering from the achiral solvent. Relatively dilute solutions could be detected (10-4 mol dm-3), about 1000× less than is necessary for conventional ROA detection of the pure co-ligand and comparable to concentrations needed for conventional ECD spectroscopy. The results thus show that differential ECD-Raman measurements can be conveniently used to monitor molecular interactions and molecular spectroscopic properties.

12.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673688

RESUMEN

Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome-lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1-30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.


Asunto(s)
Antimaláricos/farmacología , Autofagosomas/efectos de los fármacos , Autofagia , Cloroquina/farmacología , Endotelio Vascular/metabolismo , Lípidos/análisis , Fusión de Membrana , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Humanos
13.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805827

RESUMEN

The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , ADN/química , ARN Guía de Kinetoplastida/química , Ribonucleoproteínas/química , Streptococcus pyogenes/química , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Dicroismo Circular , ADN/genética , ADN/metabolismo , Edición Génica/métodos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Streptococcus pyogenes/enzimología
14.
Angew Chem Int Ed Engl ; 60(39): 21205-21210, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34216087

RESUMEN

Resonance Raman optical activity (RROA) possesses all aspects of a sensitive tool for molecular detection, but its measurement remains challenging. We demonstrate that reliable recording of RROA of chiral colorful compounds is possible, but only after considering the effect of the electronic circular dichroism (ECD) on the ROA spectra induced by the dissolved chiral compound. We show RROA for a number of model vitamin B12 derivatives that are chemically similar but exhibit distinctively different spectroscopic behavior. The ECD/ROA effect is proportional to the concentration and dependent on the optical pathlength of the light propagating through the sample. It can severely alter relative band intensities and signs in the natural RROA spectra. The spectra analyses are supported by computational modeling based on density functional theory. Neglecting the ECD effect during ROA measurement can lead to misinterpretation of the recorded spectra and erroneous conclusions about the molecular structure.

15.
Biol Blood Marrow Transplant ; 26(2): 401-406, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31622770

RESUMEN

Despite the fact that the choice of donors and the number of sources of hematopoietic stem cells have increased, a sibling remains a preferred donor for allogeneic hematopoietic stem cell transplantation (HSCT). Transplant donation between siblings is a unique life experience that may have an impact on their future relationship. The aim of the study was to quantitatively measure the quality of life (QoL) in patients who underwent transplant and to describe the relationship between a recipient and a sibling donor after HSCT. We identified and invited 82 adults aged 18.0 to 38.7 years (median, 23.6) who underwent HSCT in our center and their sibling donors to participate in this survey. Forty-five patients (54.9%) and their siblings consented to take part in the study. The studied group consisted of 45 matched siblings donor (MSD)-HSCT recipients (19 women and 26 men) aged 18.0 to 36.2 (median, 28.5) years, who underwent MSD-HSCT at the age of 5.8 to 16.3 (median, 11.9) years, and their sibling donors aged 21.0 to 36.0 (median, 31.0) years, who were aged 11.2 to 20.2 (median, 15.5) years at bone marrow harvesting. For QoL and sibling relationship assessment, we used the Functional Assessment of Cancer Therapy-Bone Marrow Transplantation (FACT-BMT) and the Adult Sibling Relationship Questionnaire (ASQR). Higher scores indicate better quality of life in each scale of the FACT-BMT and the more significant is the factor in a sibling relationship measured by the ASQR. The questionnaires were given to both subgroups, HSCT recipients and donors, and the results were compared with each other. The overall result of the FACT-BMT questionnaire was 117 ± 35.0. The highest QoL was found in the functional (25.0 ± 3.5) and social well-being (25.0 ± 3.5) subscales, whereas the worst was in the emotional well-being (18.0 ± 9.5) subscale. Statistically, the QoL score was not influenced by current age (P = .378), age at the moment of HSCT (P = .256), and sex (P = .117). Being a recipient or a donor of HSCT was not a significant factor associated with warmth (2.6 ± 0.5 versus 3.1 ± 0.5; P = .830) and conflict (2.0 ± 0.7 versus 2.1 ± 1.2; P = .886) within the sibling relationship, whereas recipients scored significantly lower in rivalry within the sibling relationship compared with HSCT donors (0.8 ± 0.3 versus 1.2 ± 0.2; P = .012). The FACT Treatment Outcome Index remained the only significant predictor of warmth in the sibling relationship between HSCT recipient and donor. QoL in adult patients after HSCT in childhood was good. Sibling donor-recipient relationship is unbalanced, with a higher level of rivalry presented among donors. Further multicenter studies based on a larger cohort of patients are necessary to assess all aspects of the sibling relationship after transplantation experience.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Adulto , Niño , Femenino , Humanos , Masculino , Calidad de Vida , Hermanos , Donantes de Tejidos , Trasplante Homólogo
16.
Anal Chem ; 92(24): 15745-15756, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33225709

RESUMEN

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.

17.
Analyst ; 145(5): 1749-1758, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31913373

RESUMEN

A new type of aggregate, formed in human red blood cells (RBCs) in response to glutaraldehyde treatment, was discovered and analyzed with the classical and advanced biomolecular imaging techniques. Advanced Heinz body-like aggregates (AHBA) formed in a single human RBC are characterized by a higher level of hemoglobin (Hb) degradation compared to typical Heinz bodies, which consist of hemichromes. The complete destruction of the porphyrin structure of Hb and the aggregation of the degraded proteins in the presence of Fe3+ ions are observed. The presence of such aggregated, highly degraded proteins inside RBCs, without cell membrane destruction, has been never reported before. For the first time the spatial differentiation of two kinds of protein mixtures inside a single RBC, with different phenylalanine (Phe) conformations, is visualized. The non-resonant Raman spectra of altered RBCs with AHBA are characterized by the presence of a strong band located at 1037 cm-1, which confirms that glutaraldehyde interacts strongly with Phe. The shape-shifting of RBCs from a biconcave disk to a spherical structure and sinking of AHBA to the bottom of the cell are observed. Results reveal that the presence of AHBA should be considered when fixing RBCs and indicate the analytical potential of Raman spectroscopy, atomic force microscopy and scanning near-field optical microscopy in AHBA detection and analysis.


Asunto(s)
Citoesqueleto/metabolismo , Cuerpos de Heinz/patología , Glutaral/toxicidad , Cuerpos de Heinz/ultraestructura , Hemo/metabolismo , Hemoglobinas/metabolismo , Humanos , Masculino , Agregado de Proteínas/fisiología
18.
Molecules ; 25(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987678

RESUMEN

This work demonstrates resonance Raman optical activity (RROA) spectra of three truncated vitamin B12 derivatives modified within the nucleotide loop. Since truncated cobalamins possess sufficiently high rotational strength in the range of ROA excitation (532 nm), it was possible to record their spectra in the resonance condition. They showed several distinct spectral features allowing for the distinguishing of studied compounds, in contrast to other methods, i.e., UV-Vis absorption, electronic circular dichroism, and resonance Raman spectroscopy. The improved capacity of the RROA method is based here on the excitation of molecules via more than two electronic states, giving rise to the bisignate RROA spectrum, significantly distinct from a parent Raman spectrum. This observation is an important step in the dissemination of using RROA spectroscopy in studying the complex structure of corrinoids which may prove crucial for a better understanding of their biological role.


Asunto(s)
Vitamina B 12/química , Dicroismo Circular , Estructura Molecular , Espectrometría Raman
19.
Molecules ; 25(23)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291234

RESUMEN

Endothelial cells (EC) constitute a single layer of the lining of blood vessels and play an important role in maintaining cardiovascular homeostasis. Endothelial dysfunction has been recognized as a primary or secondary cause of many diseases and it manifests itself, among others, by increased lipid content or a change in the lipid composition in the EC. Therefore, the analysis of cellular lipids is crucial to understand the mechanisms of disease development. Tumor necrosis factor alpha (TNF-α)-induced inflammation of EC alters the lipid content of cells, which can be detected by Raman spectroscopy. By default, lipid detection is carried out in a label-free manner, and these compounds are recognized based on their spectral profile characteristics. We consider (3S,3'S)-astaxanthin (AXT), a natural dye with a characteristic resonance spectrum, as a new Raman probe for the detection of lipids in the EC of various vascular beds, i.e., the aorta, brain and heart. AXT colocalizes with lipids in cells, enabling imaging of lipid-rich cellular components in a time-dependent manner using laser power 10 times lower than that commonly used to measure biological samples. The results show that AXT can be used to study lipids distribution in EC at various locations, suggesting its use as a universal probe for studying cellular lipids using Raman spectroscopy. The use of labeled Raman imaging of lipids in the EC of various organs could contribute to their easier identification and to a better understanding of the development and progression of various vascular diseases, and it could also potentially improve their diagnosis and treatment.


Asunto(s)
Células Endoteliales/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Imagen Molecular , Espectrometría Raman , Colorantes/química , Humanos , Imagen Molecular/métodos , Estructura Molecular , Especificidad de Órganos , Espectrometría Raman/métodos , Coloración y Etiquetado , Xantófilas/química
20.
Molecules ; 25(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070018

RESUMEN

In fertilized fish eggs, lipids are an energy reservoir for the embryo development and substrate for organogenesis. They occur in the cytoplasmic area and form lipid droplets (LDs), but also the yolk egg is composed of lipids and proteins. Insight on the LD formation and distribution and their interactions with other cellular organelles could provide information about the role based on the egg development. For non-destructive, macro-scale visualization of biochemical components of fish eggs, such as lipids proteins and water, near-infrared (NIR) imaging is the method of choice. Mid-infrared (MIR) and Raman spectroscopy imaging were used to provide details on chemical composition of LDs and other egg organelles. NIR imaging illustrated main compartments of the egg including membrane, LDs, yolk, relative protein, and lipid content in well-localized egg structures and their interactions with water molecules. In the yolk, a co-existence of lipids and proteins with carotenoids and carbohydrates was detected by Raman spectroscopy. Results showed a prominent decrease of unsaturated fatty acids, phospholipids, and triglycerides/cholesteryl esters content in the eggs due to the embryo development. An opposite trend of changes was observed by MIR spectroscopy for the glycogen, suggesting that consumption of lipids occurred with production of this carbohydrate. The comprehensive vibrational spectroscopic analysis based on NIR, MIR, and Raman imaging is a unique tool in studying in situ dynamic biological processes.


Asunto(s)
Gotas Lipídicas/química , Espectrofotometría Infrarroja/métodos , Espectrometría Raman/métodos , Animales , Yema de Huevo/clasificación , Huevos/análisis , Fosfolípidos/química , Cigoto/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA