Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 19(1): 61-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37340283

RESUMEN

PURPOSE: Advances in surgical phase recognition are generally led by training deeper networks. Rather than going further with a more complex solution, we believe that current models can be exploited better. We propose a self-knowledge distillation framework that can be integrated into current state-of-the-art (SOTA) models without requiring any extra complexity to the models or annotations. METHODS: Knowledge distillation is a framework for network regularization where knowledge is distilled from a teacher network to a student network. In self-knowledge distillation, the student model becomes the teacher such that the network learns from itself. Most phase recognition models follow an encoder-decoder framework. Our framework utilizes self-knowledge distillation in both stages. The teacher model guides the training process of the student model to extract enhanced feature representations from the encoder and build a more robust temporal decoder to tackle the over-segmentation problem. RESULTS: We validate our proposed framework on the public dataset Cholec80. Our framework is embedded on top of four popular SOTA approaches and consistently improves their performance. Specifically, our best GRU model boosts performance by [Formula: see text] accuracy and [Formula: see text] F1-score over the same baseline model. CONCLUSION: We embed a self-knowledge distillation framework for the first time in the surgical phase recognition training pipeline. Experimental results demonstrate that our simple yet powerful framework can improve performance of existing phase recognition models. Moreover, our extensive experiments show that even with 75% of the training set we still achieve performance on par with the same baseline model trained on the full set.


Asunto(s)
Aprendizaje , Estudiantes , Humanos
2.
J Neurosurg ; : 1-8, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740198

RESUMEN

OBJECTIVE: Surgical workflow analysis involves systematically breaking down operations into key phases and steps. Automatic analysis of this workflow has potential uses for surgical training, preoperative planning, and outcome prediction. Recent advances in machine learning (ML) and computer vision have allowed accurate automated workflow analysis of operative videos. In this Idea, Development, Exploration, Assessment, Long-term study (IDEAL) stage 0 study, the authors sought to use Touch Surgery for the development and validation of an ML-powered analysis of phases and steps in the endoscopic transsphenoidal approach (eTSA) for pituitary adenoma resection, a first for neurosurgery. METHODS: The surgical phases and steps of 50 anonymized eTSA operative videos were labeled by expert surgeons. Forty videos were used to train a combined convolutional and recurrent neural network model by Touch Surgery. Ten videos were used for model evaluation (accuracy, F1 score), comparing the phase and step recognition of surgeons to the automatic detection of the ML model. RESULTS: The longest phase was the sellar phase (median 28 minutes), followed by the nasal phase (median 22 minutes) and the closure phase (median 14 minutes). The longest steps were step 5 (tumor identification and excision, median 17 minutes); step 3 (posterior septectomy and removal of sphenoid septations, median 14 minutes); and step 4 (anterior sellar wall removal, median 10 minutes). There were substantial variations within the recorded procedures in terms of video appearances, step duration, and step order, with only 50% of videos containing all 7 steps performed sequentially in numerical order. Despite this, the model was able to output accurate recognition of surgical phases (91% accuracy, 90% F1 score) and steps (76% accuracy, 75% F1 score). CONCLUSIONS: In this IDEAL stage 0 study, ML techniques have been developed to automatically analyze operative videos of eTSA pituitary surgery. This technology has previously been shown to be acceptable to neurosurgical teams and patients. ML-based surgical workflow analysis has numerous potential uses-such as education (e.g., automatic indexing of contemporary operative videos for teaching), improved operative efficiency (e.g., orchestrating the entire surgical team to a common workflow), and improved patient outcomes (e.g., comparison of surgical techniques or early detection of adverse events). Future directions include the real-time integration of Touch Surgery into the live operative environment as an IDEAL stage 1 (first-in-human) study, and further development of underpinning ML models using larger data sets.

3.
Int J Comput Assist Radiol Surg ; 14(7): 1247-1257, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31165349

RESUMEN

PURPOSE: We present a different approach for annotating laparoscopic images for segmentation in a weak fashion and experimentally prove that its accuracy when trained with partial cross-entropy is close to that obtained with fully supervised approaches. METHODS: We propose an approach that relies on weak annotations provided as stripes over the different objects in the image and partial cross-entropy as the loss function of a fully convolutional neural network to obtain a dense pixel-level prediction map. RESULTS: We validate our method on three different datasets, providing qualitative results for all of them and quantitative results for two of them. The experiments show that our approach is able to obtain at least [Formula: see text] of the accuracy obtained with fully supervised methods for all the tested datasets, while requiring [Formula: see text][Formula: see text] less time to create the annotations compared to full supervision. CONCLUSIONS: With this work, we demonstrate that laparoscopic data can be segmented using very few annotated data while maintaining levels of accuracy comparable to those obtained with full supervision.


Asunto(s)
Laparoscopía/métodos , Instrumentos Quirúrgicos , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA