Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 31(5): e02316, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33636026

RESUMEN

Modeling wildfire activity is crucial for informing science-based risk management and understanding the spatiotemporal dynamics of fire-prone ecosystems worldwide. Models help disentangle the relative influences of different factors, understand wildfire predictability, and provide insights into specific events. Here, we develop Firelihood, a two-component, Bayesian, hierarchically structured, probabilistic model of daily fire activity, which is modeled as the outcome of a marked point process: individual fires are the points (occurrence component), and fire sizes are the marks (size component). The space-time Poisson model for occurrence is adjusted to gridded fire counts using the integrated nested Laplace approximation (INLA) combined with the stochastic partial differential equation (SPDE) approach. The size model is based on piecewise-estimated Pareto and generalized Pareto distributions, adjusted with INLA. The Fire Weather Index (FWI) and forest area are the main explanatory variables. Temporal and spatial residuals are included to improve the consistency of the relationship between weather and fire occurrence. The posterior distribution of the Bayesian model provided 1,000 replications of fire activity that were compared with observations at various temporal and spatial scales in Mediterranean France. The number of fires larger than 1 ha across the region was coarsely reproduced at the daily scale, and was more accurately predicted on a weekly basis or longer. The regional weekly total number of larger fires (10-100 ha) was predicted as well, but the accuracy degraded with size, as the model uncertainty increased with event rareness. Local predictions of fire numbers or burned areas also required a longer aggregation period to maintain model accuracy. The estimation of fires larger than 1 ha was also consistent with observations during the extreme fire season of the 2003 unprecedented heat wave, but the model systematically underrepresented large fires and burned areas, which suggests that the FWI does not consistently rate the actual danger of large fire occurrence during heat waves. Firelihood enabled a novel analysis of the stochasticity underlying fire hazard, and offers a variety of applications, including fire hazard predictions for management and projections in the context of climate change.


Asunto(s)
Incendios , Incendios Forestales , Teorema de Bayes , Ecosistema , Bosques
2.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20200137, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33641468

RESUMEN

We examine wet events (WEs) defined from an hourly rainfall dataset based on 64 gauged observations across India (1969-2016). More than 90% of the WEs (accounting for nearly 60% of total rainfall) are found to last less than or equal to 5 h. WEs are then clustered into six canonical local-scale storm profiles (CanWE). The most frequent canonical type (CanWE#1 and #2) are associated with very short and nominal rainfall. The remaining canonical WEs can be grouped into two broad families: (i) CanWE#3 and #5 with short (usually less than or equal to 3-4 h), but very intense rainfall strongly phase-locked onto the diurnal cycle (initiation peaks in mid-afternoon) and probably related to isolated thunderstorms or small mesoscale convective clusters (MCS), and (ii) CanWE#4 and #6 with longer and lighter rainfall in mean (but not necessarily for their maximum) and more independent of the diurnal cycle, thus probably related to larger MCSs or tropical lows. The spatial extent of the total rainfall received during each CanWE, as shown by IMERG gridded rainfall, is indeed smaller for CanWE#3 and #5 than for CanWE#4 and especially #6. Most of the annual maximum 1 hour rainfalls occur during CanWE#5. Long-term trend analysis of the June-September canonical WEs across boreal monsoonal India reveals an increase in the relative frequency of the convective storm types CanWE#3 and #5 in recent years, as expected from global warming and thermodynamic considerations. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

3.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190544, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33641466

RESUMEN

It is widely recognized that future rainfall extremes will intensify. This expectation is tied to the Clausius-Clapeyron (CC) relation, stating that the maximum water vapour content in the atmosphere increases by 6-7% per degree warming. Scaling rates for the dependency of hourly precipitation extremes on near-surface (dew point) temperature derived from day-to-day variability have been found to exceed this relation (super-CC). However, both the applicability of this approach in a long-term climate change context, and the physical realism of super-CC rates have been questioned. Here, we analyse three different climate change experiments with a convection-permitting model over Western Europe: simple uniform-warming, 11-year pseudo-global warming and 11-year global climate model driven. The uniform-warming experiment results in consistent increases to the intensity of hourly rainfall extremes of approximately 11% per degree for moderate to high extremes. The other two, more realistic, experiments show smaller increases-usually at or below the CC rate-for moderate extremes, mostly resulting from significant decreases to rainfall occurrence. However, changes to the most extreme events are broadly consistent with 1.5-2 times the CC rate (10-14% per degree), as predicted from the present-day scaling rate for the highest percentiles. This result has important implications for climate adaptation. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190542, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33641464

RESUMEN

A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

5.
Nat Commun ; 14(1): 427, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702835

RESUMEN

Climate teleconnections (CT) remotely influence weather conditions in many regions on Earth, entailing changes in primary drivers of fire activity such as vegetation biomass accumulation and moisture. We reveal significant relationships between the main global CTs and burned area that vary across and within continents and biomes according to both synchronous and lagged signals, and marked regional patterns. Overall, CTs modulate 52.9% of global burned area, the Tropical North Atlantic mode being the most relevant CT. Here, we summarized the CT-fire relationships into a set of six global CT domains that are discussed by continent, considering the underlying mechanisms relating weather patterns and vegetation types with burned area across the different world's biomes. Our findings highlight the regional CT-fire relationships worldwide, aiming to further support fire management and policy-making.


Asunto(s)
Clima , Incendios , Ecosistema , Tiempo (Meteorología) , Biomasa , Cambio Climático
6.
Sci Rep ; 10(1): 13790, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796945

RESUMEN

Wildfire activity is expected to increase across the Mediterranean Basin because of climate change. However, the effects of future climate change on the combinations of atmospheric conditions that promote wildfire activity remain largely unknown. Using a fire-weather based classification of wildfires, we show that future climate scenarios point to an increase in the frequency of two heat-induced fire-weather types that have been related to the largest wildfires in recent years. Heat-induced fire-weather types are characterized by compound dry and warm conditions occurring during summer heatwaves, either under moderate (heatwave type) or intense (hot drought type) drought. The frequency of heat-induced fire-weather is projected to increase by 14% by the end of the century (2071-2100) under the RCP4.5 scenario, and by 30% under the RCP8.5, suggesting that the frequency and extent of large wildfires will increase throughout the Mediterranean Basin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA