Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuropharmacology ; 52(1): 126-35, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16930634

RESUMEN

Boutons are specialised presynaptic compartments that lie along the axons of central neurons. Release of neurotransmitter from boutons is tightly regulated by the level of intracellular calcium [Ca2+]i. A rise in Ca2+ level may be generated in several ways; entry of extracellular Ca2+ via voltage gated calcium channels (VGCCs), entry via ligand-operated channels (LOCs) or the release of Ca2+ from intracellular Ca2+ stores. The role of Ca2+ stores in boutons remains poorly understood, despite recent work indicating that the release of Ca2+ from the endoplasmic reticulum (ER) may contribute to transmitter release. In this study we assess whether the lysosome or a closely related organelle functions as a Ca2+ store in the boutons of hippocampal pyramidal neurones. Lysosomes are small acidic organelles more commonly known for their role in degrading redundant cellular constituents. Using a fluorescent lysosomal marker, we show that lysosomes are located in the axons of hippocampal CA3 neurones. Selective pharmacological lysis of the lysosomes with glycyl-phenylalanine 2-naphthylamide (GPN) generates rapid, highly focal Ca2+ transients within the axon and increases the frequency of spontaneous miniature excitatory post-synaptic currents (mEPSCs), revealing that the organelle contains Ca2+ at a concentration sufficient to evoke transmitter release. Confocal laser scanning microscopy, combined with electrophysiology is used to monitor the action potential evoked increases in [Ca2+]i in boutons. We show that disruption of lysosomes compromises action potential evoked [Ca2+]i but this effect is occluded if the ER is discharged. Conversely, disruption of the lysosome does not appear to impact on the capacity of the ER to release Ca2+. These results suggest that the lysosome may serve as a Ca2+ store within hippocampal boutons, with a Ca2+ signalling role that is unique from that of the ER.


Asunto(s)
Calcio/metabolismo , Hipocampo/citología , Lisosomas/fisiología , Terminales Presinápticos/metabolismo , Células Piramidales/ultraestructura , Aminas/metabolismo , Animales , Animales Recién Nacidos , Dipéptidos/farmacología , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Técnicas In Vitro , Lisosomas/efectos de los fármacos , Masculino , Microscopía Confocal/métodos , Orgánulos/efectos de los fármacos , Orgánulos/fisiología , Terminales Presinápticos/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Tapsigargina/farmacología , Factores de Tiempo
2.
Neuron ; 93(1): 132-146, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27989455

RESUMEN

Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca2+ release from lysosomes in the dendrites. This Ca2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling.


Asunto(s)
Calcio/metabolismo , Catepsina B/metabolismo , Espinas Dendríticas/metabolismo , Exocitosis/fisiología , Lisosomas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Animales , Dendritas/metabolismo , Espinas Dendríticas/fisiología , Hipocampo/citología , Masculino , Técnicas de Placa-Clamp , Células Piramidales/citología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA