Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(11): e1010924, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383559

RESUMEN

Malaria during pregnancy is a major global health problem caused by infection with Plasmodium falciparum parasites. Severe effects arise from the accumulation of infected erythrocytes in the placenta. Here, erythrocytes infected by late blood-stage parasites adhere to placental chondroitin sulphate A (CS) via VAR2CSA-type P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. Immunity to placental malaria is acquired through exposure and mediated through antibodies to VAR2CSA. Through evolution, the VAR2CSA proteins have diversified in sequence to escape immune recognition but retained their overall macromolecular structure to maintain CS binding affinity. This structural conservation may also have allowed development of broadly reactive antibodies to VAR2CSA in immune women. Here we show the negative stain and cryo-EM structure of the only known broadly reactive human monoclonal antibody, PAM1.4, in complex with VAR2CSA. The data shows how PAM1.4's broad VAR2CSA reactivity is achieved through interactions with multiple conserved residues of different sub-domains forming conformational epitope distant from the CS binding site on the VAR2CSA core structure. Thus, while PAM1.4 may represent a class of antibodies mediating placental malaria immunity by inducing phagocytosis or NK cell-mediated cytotoxicity, it is likely that broadly CS binding-inhibitory antibodies target other epitopes at the CS binding site. Insights on both types of broadly reactive monoclonal antibodies may aid the development of a vaccine against placental malaria.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Femenino , Embarazo , Antígenos de Protozoos , Malaria Falciparum/parasitología , Epítopos , Anticuerpos Antiprotozoarios , Anticuerpos Monoclonales , Microscopía por Crioelectrón , Placenta/metabolismo , Plasmodium falciparum/metabolismo , Eritrocitos/parasitología , Sulfatos de Condroitina/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(5): 998-1002, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096331

RESUMEN

Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.


Asunto(s)
Antígenos de Protozoos/química , Proteínas Portadoras/química , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/química , Ingeniería de Proteínas/métodos , Algoritmos , Sustitución de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Basigina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Clonación Molecular , Biología Computacional/métodos , Diseño de Fármacos , Calor , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Vacunas de Subunidad/inmunología
3.
PLoS Pathog ; 11(7): e1005022, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134405

RESUMEN

Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Formación de Roseta , alfa-Macroglobulinas/metabolismo , Animales , Humanos , Plasmodium falciparum/metabolismo
4.
PLoS Biol ; 12(7): e1001897, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24983235

RESUMEN

The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Oligopéptidos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Sulfonamidas/farmacología , Retículo Endoplásmico/metabolismo , Eritrocitos/parasitología , Humanos , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/metabolismo
5.
J Immunol ; 195(7): 3273-83, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320251

RESUMEN

The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLß3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLß3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLß3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLß3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLß3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLß3_D4 has previously been shown to contain the ICAM-1 binding site of DBLß domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos/inmunología , Molécula 1 de Adhesión Intercelular/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Adhesión Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/parasitología , Epítopos/inmunología , Membrana Eritrocítica/inmunología , Eritrocitos/parasitología , Hibridomas , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
6.
Cell Microbiol ; 17(6): 819-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25482886

RESUMEN

Acquired protection from Plasmodium falciparum malaria takes years to develop, probably reflecting the ability of the parasites to evade immunity. A recent example of this is the binding of the Fc region of IgM to VAR2CSA-type PfEMP1. This interferes with specific IgG recognition and phagocytosis of opsonized infected erythrocytes (IEs) without compromising the placental IE adhesion mediated by this PfEMP1 type. IgM also binds via Fc to several other PfEMP1 proteins, where it has been proposed to facilitate rosetting (binding of uninfected erythrocytes to a central IE). To further dissect the functional role of Fc -mediated IgM binding to PfEMP1, we studied the PfEMP1 protein HB3VAR06, which mediates rosetting and binds IgM. Binding of IgM to this PfEMP1 involved the Fc domains Cµ3-Cµ4 in IgM and the penultimate DBL domain (DBLζ2) at the C-terminus of HB3VAR06. However, IgM binding did not inhibit specific IgG labelling of HB3VAR06 or shield IgG-opsonized IEs from phagocytosis. Instead, IgM was required for rosetting, and each pentameric IgM molecule could bind two HB3VAR06 molecules. Together, our data indicate that the primary function of Fc -mediated IgM binding in rosetting is not to shield IE from specific IgG recognition and phagocytosis as in VAR2CSA-type PfEMP1. Rather, the function appears to be strengthening of IE-erythrocyte interactions. In conclusion, our study provides new evidence on the molecular details and functional significance of rosetting, a long-recognized marker of parasites that cause severe P. falciparum malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Inmunoglobulina M/metabolismo , Plasmodium falciparum/inmunología , Proteínas Protozoarias/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas , Unión Proteica
7.
J Immunol ; 192(11): 5236-44, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24760153

RESUMEN

Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute. In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against this disease.


Asunto(s)
Linfocitos B/inmunología , Memoria Inmunológica , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Complicaciones Parasitarias del Embarazo/inmunología , Proteínas Protozoarias/inmunología , Adulto , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/metabolismo , Membrana Eritrocítica/inmunología , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Femenino , Ghana , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Malaria Falciparum/sangre , Plasmodium falciparum/metabolismo , Embarazo , Complicaciones Parasitarias del Embarazo/sangre , Proteínas Protozoarias/metabolismo
8.
Infect Immun ; 83(10): 3972-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26216422

RESUMEN

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesive proteins expressed on the surfaces of infected erythrocytes (IEs) are of key importance in the pathogenesis of P. falciparum malaria. Several structurally and functionally defined PfEMP1 types have been associated with severe clinical manifestations, such as cerebral malaria in children and placental malaria in pregnant women. PfEMP1 that can bind the Fc part of IgM (Fcµ) characterizes one such type, although the functional significance of this IgM binding to PfEMP1 remains unclear. In this study, we report the identification and functional analysis of five IgM-binding PfEMP1 proteins encoded by P. falciparum NF54. In addition to the VAR2CSA-type PFL0030c protein, already known to bind Fcµ and to mediate chondroitin sulfate A (CSA)-specific adhesion of IEs in the placenta, we found four PfEMP1 proteins not previously known to bind IgM this way. Although they all contained Duffy binding-like ε (DBLε) domains similar to those in VAR2CSA-type PfEMP1, they did not mediate IE adhesion to CSA, and IgM binding did not shield IEs from phagocytosis of IgG-opsonized IEs. In this way, these new IgM-binding PfEMP1 proteins resemble the rosette-mediating and IgM-binding PfEMP1 HB3VAR06, but none of them mediated formation of rosettes. We could map the capacity for Fc-specific IgM binding to DBLε domains near the C terminus for three of the four PfEMP1 proteins tested. Our study provides new evidence regarding Fc-dependent binding of IgM to PfEMP1, which appears to be a common and multifunctional phenotype.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina M/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Anticuerpos Antiprotozoarios/genética , Genoma de Protozoos , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina M/genética , Malaria Falciparum/genética , Malaria Falciparum/inmunología , Plasmodium falciparum/genética , Unión Proteica , Proteínas Protozoarias/genética , Formación de Roseta
9.
Infect Immun ; 82(5): 1860-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24566620

RESUMEN

Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines.


Asunto(s)
Antígenos de Protozoos/fisiología , Linfocitos B/fisiología , Malaria Falciparum/inmunología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Adulto , Anticuerpos Antiprotozoarios/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación de la Expresión Génica/fisiología , Ghana/epidemiología , Humanos , Inmunoglobulina G/sangre , Malaria Falciparum/epidemiología , Embarazo , Complicaciones Parasitarias del Embarazo/epidemiología , Complicaciones Parasitarias del Embarazo/inmunología , Proteínas Protozoarias/genética
10.
Proc Natl Acad Sci U S A ; 108(30): 12485-90, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746929

RESUMEN

Plasmodium falciparum malaria is a major cause of mortality and severe morbidity. Its virulence is related to the parasite's ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is central to both. Here, we present evidence of a P. falciparum evasion mechanism not previously documented: the masking of PfEMP1-specific IgG epitopes by nonspecific IgM. Nonspecific IgM binding to erythrocytes infected by parasites expressing the PfEMP1 protein VAR2CSA (involved in placental malaria pathogenesis and protective immunity) blocked subsequent specific binding of human monoclonal IgG to the Duffy binding-like (DBL) domains DBL3X and DBL5ε of this PfEMP1 variant. Strikingly, a VAR2CSA-specific monoclonal antibody that binds outside these domains and can inhibit IE adhesion to the specific VAR2CSA receptor chondroitin sulfate A was unaffected. Nonspecific IgM binding protected the parasites from FcγR-dependent phagocytosis of VAR2CSA(+) IEs, but it did not affect IE adhesion to chondroitin sulfate A or lead to C1q deposition on IEs. Taken together, our results indicate that the VAR2CSA affinity for nonspecific IgM has evolved to allow placenta-sequestering P. falciparum to evade acquired protective immunity without compromising VAR2CSA function or increasing IE susceptibility to complement-mediated lysis. Furthermore, functionally important PfEMP1 epitopes not prone to IgM masking are likely to be particularly important targets of acquired protective immunity to P. falciparum malaria.


Asunto(s)
Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Anticuerpos Antiprotozoarios/metabolismo , Reacciones Antígeno-Anticuerpo , Antígenos de Protozoos/metabolismo , Epítopos/metabolismo , Membrana Eritrocítica/inmunología , Membrana Eritrocítica/parasitología , Femenino , Humanos , Tolerancia Inmunológica , Inmunoglobulina G/metabolismo , Inmunoglobulina M/metabolismo , Técnicas In Vitro , Malaria Falciparum/complicaciones , Malaria Falciparum/parasitología , Fagocitosis , Placenta/inmunología , Placenta/parasitología , Plasmodium falciparum/patogenicidad , Embarazo , Complicaciones Parasitarias del Embarazo/inmunología , Complicaciones Parasitarias del Embarazo/parasitología
11.
Sci Rep ; 14(1): 4888, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418831

RESUMEN

Clinical immunity to malaria develops slowly after repeated episodes of infection and antibodies are essential in naturally acquired immunity against malaria. However, chronic exposure to malaria has been linked to perturbation in B-cell homeostasis with the accumulation of atypical memory B cells. It is unclear how perturbations in B cell subsets influence antibody breadth, avidity, and function in individuals naturally exposed to malaria. We show that individuals living in high malaria transmission regions in Ghana have higher Plasmodium falciparum merozoite antigen-specific antibodies and an increased antibody breadth score but lower antibody avidities relative to low transmission regions. The frequency of circulating atypical memory B cells is positively associated with an individual's antibody breadth. In vitro growth inhibition is independent of the ability to bind to free merozoites but associated with the breadth of antibody reactivity in an individual. Taken together, our data shows that repeated malaria episodes hamper the development of high avid antibodies which is compensated for by an increase in antibody breadth. Our results provide evidence to reinforce the idea that in regions with high malaria prevalence, repeated malaria infections lead to the broadening of antibody diversity and the continued presence of atypical memory B cell populations.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Animales , Humanos , Malaria Falciparum/epidemiología , Células B de Memoria , Antígenos de Protozoos , Anticuerpos Antiprotozoarios , Plasmodium falciparum , Merozoítos , Proteínas Protozoarias
12.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849365

RESUMEN

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Animales , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Femenino , Malaria Falciparum/prevención & control , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Antígenos de Protozoos/inmunología , Ratas , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Monoclonales/inmunología , Humanos , Epítopos/inmunología , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo
13.
Trends Parasitol ; 39(3): 160-162, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682939

RESUMEN

The Plasmodium falciparum invasion complex - consisting of the prime blood-stage vaccine candidates PfRH5, PfCyRPA and PfRipr - is essential and conserved. New data from Scally et al. reveal that the complex consists of two additional proteins, adding important knowledge to the current understanding of the biology behind the invasion process.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Humanos , Plasmodium falciparum , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos/metabolismo , Proteínas Portadoras/metabolismo , Anticuerpos Antiprotozoarios , Eritrocitos , Malaria Falciparum/prevención & control
14.
Immun Inflamm Dis ; 11(6): e910, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37382252

RESUMEN

BACKGROUND: The development of vaccine candidates for COVID-19, and the administration of booster vaccines, has meant a significant reduction in COVID-19 related deaths world-wide and the easing of global restrictions. However, new variants of SARS-CoV-2 have emerged with less susceptibility to vaccine induced immunity leading to breakthrough infections among vaccinated people. It is generally acknowledged that immunoglobulins play the major role in immune-protection, primarily through binding to the SARS-COV-2 receptor binding domain (RBD) and thereby inhibiting viral binding to the ACE2 receptor. However, there are limited investigations of anti-RBD isotypes (IgM, IgG, IgA) and IgG subclasses (IgG1-4) over the course of vaccination and breakthrough infection. METHOD: In this study, SARS-CoV-2 humoral immunity is examined in a single subject with unique longitudinal sampling. Over a two year period, the subject received three doses of vaccine, had two active breakthrough infections and 22 blood samples collected. Serological testing included anti-nucleocapsid total antibodies, anti-RBD total antibodies, IgG, IgA, IgM and IgG subclasses, neutralization and ACE2 inhibition against the wildtype (WT), Delta and Omicron variants. RESULTS: Vaccination and breakthrough infections induced IgG, specifically IgG1 and IgG4 as well as IgM and IgA. IgG1 and IgG4 responses were cross reactive and associated with broad inhibition. CONCLUSION: The findings here provide novel insights into humoral immune response characteristics associated with SARS-CoV-2 breakthrough infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inmunidad Humoral , Enzima Convertidora de Angiotensina 2 , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina M
15.
J Immunol ; 185(12): 7553-61, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21078904

RESUMEN

Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Sulfatos de Condroitina/inmunología , Epítopos/inmunología , Eritrocitos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adulto , Linfocitos B/inmunología , Niño , Preescolar , Epítopos/genética , Eritrocitos/parasitología , Femenino , Humanos , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/farmacología , Malaria Falciparum/genética , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Masculino , Placenta/inmunología , Placenta/parasitología , Plasmodium falciparum/genética , Embarazo , Complicaciones Infecciosas del Embarazo/genética , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/parasitología , Complicaciones Infecciosas del Embarazo/prevención & control , Proteínas Protozoarias/genética
16.
Methods Mol Biol ; 2470: 391-405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881361

RESUMEN

The PfEMP1 family of proteins expressed on the Plasmodium falciparum-infected erythrocyte (IE) surface is the main target of naturally acquired immunity against malaria. Antibodies capable of opsonizing the IEs and blocking the binding between PfEMP1 and human receptors seems to be one of the main protective mechanisms of the naturally acquired immunity. Therefore this family of antigens is intensively studied. Monoclonal antibodies (mAbs) are a very valuable research tool for studying this diverse family of proteins and their interaction with human receptors. As examples, mAbs can be used to identify protective epitopes, epitopes that are targets of cross-reactive antibodies, and the surface expression of specific PfEMP1 variants. Fusing mouse splenocytes with myeloma cells to generate long-lived antibody secreting hybridoma cell lines have been used since the 1970s for the production of mAbs. In this chapter, we describe a simple, reliable, and relatively fast method for producing PfEMP1-specific mAbs from mouse spleen cells using semisolid HAT selection medium.


Asunto(s)
Malaria Falciparum , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Epítopos/metabolismo , Eritrocitos/metabolismo , Humanos , Inmunosupresores , Ratones , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
17.
Methods Mol Biol ; 2470: 407-421, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881362

RESUMEN

Plasmodium falciparum parasites express variable surface antigens on the infected erythrocyte surface allowing adhesion to human host receptors on the blood and endothelial cells, which can result in immune evasion. One of the most studied and key antigens in adhesion is the highly polymorphic PfEMP1. However, despite the vast variation in the PfEMP1 antigens, they are the main targets of naturally acquired immunity and are therefore promising candidates for malaria vaccine development. Generating PfEMP1-specific human monoclonal antibodies from naturally immune individuals will help to determine the best targets of protection from clinical disease. Immortalization of human B cells is one of the oldest and most efficient techniques to generate human monoclonal antibodies. Nevertheless, most protocols require flow cytometry-based cell sorting, which can be a limiting factor for many laboratories. This chapter describes an efficient protocol for the generation of PfEMP1-specific human monoclonal antibodies from malaria immune individuals that can be performed without the use of advanced cell-sorting techniques.


Asunto(s)
Malaria Falciparum , Malaria , Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Células Endoteliales , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum , Proteínas Protozoarias
18.
Sci Rep ; 12(1): 3040, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197516

RESUMEN

The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antiprotozoarios/química , Antígenos de Protozoos/inmunología , Proteínas Portadoras/inmunología , Línea Celular , Sinergismo Farmacológico , Epítopos/química , Epítopos/inmunología , Humanos , Vacunas contra la Malaria/química , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Ratones , Unión Proteica , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación
19.
Viruses ; 14(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36146667

RESUMEN

The development of vaccine candidates for COVID-19 has been rapid, and those that are currently approved display high efficacy against the original circulating strains. However, recently, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged with increased transmission rates and less susceptibility to vaccine induced immunity. A greater understanding of protection mechanisms, including antibody longevity and cross-reactivity towards the variants of concern (VoCs), is needed. In this study, samples collected in Denmark early in the pandemic from paucisymptomatic subjects (n = 165) and symptomatic subjects (n = 57) infected with SARS-CoV-2 were used to assess IgG binding and inhibition in the form of angiotensin-converting enzyme 2 receptor (ACE2) competition against the wild-type and four SARS-CoV-2 VoCs (Alpha, Beta, Gamma, and Omicron). Antibodies induced early in the pandemic via natural infection were cross-reactive and inhibited ACE2 binding of the VoC, with reduced inhibition observed for the Omicron variant. When examined longitudinally, sustained cross-reactive inhibitory responses were found to exist in naturally infected paucisymptomatic subjects. After vaccination, receptor binding domain (RBD)-specific IgG binding increased by at least 3.5-fold and inhibition of ACE2 increased by at least 2-fold. When vaccination regimens were compared (two doses of Pfizer-BioNTech BNT162b2 (n = 50), or one dose of Oxford-AstraZeneca ChAdOx1 nCoV-19 followed by Pfizer-BioNTech BNT162b2 (ChAd/BNT) (n = 15)), higher levels of IgG binding and inhibition were associated with mix and match (ChAd/BNT) prime-boosting and time since vaccination. These results are particularly relevant for countries where vaccination levels are low.


Asunto(s)
COVID-19 , Pandemias , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Humanos , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación
20.
Front Immunol ; 12: 716305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447381

RESUMEN

The highly conserved Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) is a key target for next-generation vaccines against blood-stage malaria. PfCyRPA constitute the core of a ternary complex, including the reticulocyte binding-like homologous protein 5 (PfRh5) and the Rh5-interacting protein (PfRipr), and is fundamental for merozoite invasion of erythrocytes. In this study, we show that monoclonal antibodies (mAbs) specific to PfCyRPA neutralize the in vitro growth of Ghanaian field isolates as well as numerous laboratory-adapted parasite lines. We identified subsets of mAbs with neutralizing activity that bind to distinct sites on PfCyRPA and that in combination potentiate the neutralizing effect. As antibody responses against multiple merozoite invasion proteins are thought to improve the efficacy of blood-stage vaccines, we also demonstrated that combinations of PfCyRPA- and PfRh5 specific mAbs act synergistically to neutralize parasite growth. Yet, we identified prominent strain-dependent neutralization potencies, which our results suggest is independent of PfCyRPA expression level and polymorphism, demonstrating the importance of addressing functional converseness when evaluating blood-stage vaccine candidates. Finally, our results suggest that blood-stage vaccine efficacy can be improved by directing the antibody response towards defined protective epitopes on multiple parasite antigens.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Variación Antigénica/genética , Relación Dosis-Respuesta Inmunológica , Epítopos/inmunología , Humanos , Vacunas contra la Malaria , Ratones , Pruebas de Neutralización , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica/inmunología , Proteínas Recombinantes/inmunología , Eficacia de las Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA