Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38544102

RESUMEN

This paper presents high-sensitivity sensors based on an open complementary square split-ring resonator and a modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional OCSSRR, the modified OCSSRR with multiple rings exhibits a higher frequency shift of 1200 MHz, 1270 MHz, and 1520 MHz for ethanol, methanol, and distilled water, respectively. The modified sensor also demonstrates a high sensitivity of 308 MHz/RIU for ethanol concentration which is the highest among the existing microwave sensors. The sensors in this manuscript are suitable for multiple liquid-material-sensing applications.

2.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37448011

RESUMEN

The article presents a novel circular substrate-integrated waveguide (SIW) bandpass filter (BPF) with controllable bandwidth. The proposed BPF was configured using two microstrip feed lines, semi-circular SIW cavities, capacitive slots, and inductive vias. The circular cavity was divided into two halves, and the two copies were cascaded. The resulting bisected and cascaded structures were then connected back-to-back. Finally, by introducing two inductive vias to the circular center cavity, a transmission zero was generated. In order to examine the design concept, a coupling matrix was generated. To demonstrate the theory, a third-order BPF was realized, fabricated, and experimentally validated. The BPF prototype features a wide passband of 8.7%, a low insertion loss of 1.1 dB, and a stopband of 1.5 f0 with a rejection level better than 20 dB, which makes it a potential candidate for microwave sensing and communication industries.


Asunto(s)
Ácido Aminosalicílico , Comunicación , Citoplasma , Industrias , Microondas
3.
Sci Rep ; 14(1): 920, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195829

RESUMEN

This communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-Ω microstrip feed-lines to these four quarter-mode cavity resonators enables quad-band operation with self-quadruplexing capabilities. The feed lines are organized orthogonally and off-center, which leads to port isolation greater than 32.3 dB. An equivalent network model is developed to validate the proposed antenna. To realize frequency reconfigurability, two microfluidic channels corresponding to each port are created by engraving the bottom surface of the cavity. To create a reconfigurable self-quadruplexing antenna, the channels are either filled with air or dielectric liquids of higher permittivity, so that the design offers independent tunability of the operating frequencies. As a proof of concept, the prototype of a self-quadruplexing tunable antenna is fabricated and validated through measurements. The antenna prototype occupies a footprint area of 0.37λg2. The design exhibits frequency tuning ranges of 350 MHz (8.3%), 500 MHz (10.3%), 610 MHz (11.2%), and 845 MHz (14.1%) for the first, second, third, and fourth operating bands, respectively. In all bands and across the entire tuning range, the realized gains of the designed antenna exceed 4.05 dBi. The electromagnetic modeling responses agree extremely well with the measured characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA