Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493756

RESUMEN

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Asunto(s)
Feto , Pulmón , Humanos , Diferenciación Celular , Perfilación de la Expresión Génica , Pulmón/citología , Organogénesis , Organoides , Atlas como Asunto , Feto/citología
2.
Cell ; 167(2): 566-580.e19, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716510

RESUMEN

Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.


Asunto(s)
Neuronas Dopaminérgicas/citología , Mesencéfalo/citología , Mesencéfalo/embriología , Células-Madre Neurales/citología , Neurogénesis , Células Madre Pluripotentes/citología , Animales , Línea Celular , Técnicas de Reprogramación Celular , Humanos , Aprendizaje Automático , Mesencéfalo/metabolismo , Ratones , Neuroglía/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
3.
Nature ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693260

RESUMEN

The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.

4.
Nature ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057666

RESUMEN

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.

5.
Nature ; 597(7875): 196-205, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497388

RESUMEN

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Asunto(s)
Movimiento Celular , Rastreo Celular , Células/citología , Biología Evolutiva/métodos , Embrión de Mamíferos/citología , Feto/citología , Difusión de la Información , Organogénesis , Adulto , Animales , Atlas como Asunto , Técnicas de Cultivo de Célula , Supervivencia Celular , Visualización de Datos , Femenino , Humanos , Imagenología Tridimensional , Masculino , Modelos Animales , Organogénesis/genética , Organoides/citología , Células Madre/citología
6.
Nature ; 597(7875): 250-255, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497389

RESUMEN

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Asunto(s)
Envejecimiento , Sistema Nervioso Entérico/citología , Feto/citología , Salud , Intestinos/citología , Intestinos/crecimiento & desarrollo , Ganglios Linfáticos/citología , Ganglios Linfáticos/crecimiento & desarrollo , Adulto , Animales , Niño , Enfermedad de Crohn/patología , Conjuntos de Datos como Asunto , Sistema Nervioso Entérico/anatomía & histología , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Células Epiteliales/citología , Femenino , Feto/anatomía & histología , Feto/embriología , Humanos , Intestinos/embriología , Intestinos/inervación , Ganglios Linfáticos/embriología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Organogénesis , Receptores de IgG/metabolismo , Transducción de Señal , Análisis Espacio-Temporal , Factores de Tiempo
7.
Bioessays ; : e2400118, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058892

RESUMEN

Parkinson's disease (PD) is characterized by the loss of the dopaminergic nigrostriatal pathway which has led to the successful development of drug therapies that replace or stimulate this network pharmacologically. Although these drugs work well in the early stages of the disease, over time they produce side effects along with less consistent clinical benefits to the person with Parkinson's (PwP). As such there has been much interest in repairing this pathway using transplants of dopamine neurons. This work which began 50 years ago this September is still ongoing and has now moved to first in human trials using human pluripotent stem cell-derived dopaminergic neurons. The results of these trials are eagerly awaited although proof of principle data has already come from trials using human fetal midbrain dopamine cell transplants. This data has shown that developing dopamine cells when transplanted in the brain of a PwP can survive long term with clinical benefits lasting decades and with restoration of normal dopaminergic innervation in the grafted striatum. In this article, we discuss the history of this field and how this has now led us to the recent stem cell trials for PwP.

8.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305490

RESUMEN

Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Células Madre Pluripotentes , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Neuronas Dopaminérgicas , Mesencéfalo , Diferenciación Celular/genética
9.
Brain ; 147(6): 1937-1952, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38279949

RESUMEN

In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Enfermedad de Parkinson , Humanos , Prosencéfalo Basal/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Animales , Neuronas Colinérgicas/metabolismo
10.
J Neurosci ; 43(42): 7028-7040, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37669861

RESUMEN

Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/psicología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Locus Coeruleus , Teorema de Bayes
11.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032267

RESUMEN

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Asunto(s)
Plexo Coroideo/embriología , Epitelio/metabolismo , Cuarto Ventrículo/embriología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteína Wnt-5a/metabolismo , Animales , Encéfalo/embriología , Sistemas CRISPR-Cas/genética , Línea Celular , Células Epiteliales/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal/fisiología , Proteína Wnt-5a/genética
12.
Chembiochem ; 25(11): e202400152, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38695673

RESUMEN

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.


Asunto(s)
Proteína Huntingtina , Tomografía de Emisión de Positrones , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/química , Ligandos , Humanos , Agregado de Proteínas/efectos de los fármacos , Mutación , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Radiofármacos/química
13.
Brain ; 146(7): 2717-2722, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36856727

RESUMEN

An increase in the efficiency of clinical trial conduct has been successfully demonstrated in the oncology field, by the use of multi-arm, multi-stage trials allowing the evaluation of multiple therapeutic candidates simultaneously, and seamless recruitment to phase 3 for those candidates passing an interim signal of efficacy. Replicating this complex innovative trial design in diseases such as Parkinson's disease is appealing, but in addition to the challenges associated with any trial assessing a single potentially disease modifying intervention in Parkinson's disease, a multi-arm platform trial must also specifically consider the heterogeneous nature of the disease, alongside the desire to potentially test multiple treatments with different mechanisms of action. In a multi-arm trial, there is a need to appropriately stratify treatment arms to ensure each are comparable with a shared placebo/standard of care arm; however, in Parkinson's disease there may be a preference to enrich an arm with a subgroup of patients that may be most likely to respond to a specific treatment approach. The solution to this conundrum lies in having clearly defined criteria for inclusion in each treatment arm as well as an analysis plan that takes account of predefined subgroups of interest, alongside evaluating the impact of each treatment on the broader population of Parkinson's disease patients. Beyond this, there must be robust processes of treatment selection, and consensus derived measures to confirm target engagement and interim assessments of efficacy, as well as consideration of the infrastructure needed to support recruitment, and the long-term funding and sustainability of the platform. This has to incorporate the diverse priorities of clinicians, triallists, regulatory authorities and above all the views of people with Parkinson's disease.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Humanos
14.
Brain ; 146(1): 42-49, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36343661

RESUMEN

Mitochondria are a culprit in the onset of Parkinson's disease, but their role during disease progression is unclear. Here we used Cox proportional hazards models to exam the effect of variation in the mitochondrial genome on longitudinal cognitive and motor progression over time in 4064 patients with Parkinson's disease. Mitochondrial macro-haplogroup was associated with reduced risk of cognitive disease progression in the discovery and replication population. In the combined analysis, patients with the super macro-haplogroup J, T, U# had a 41% lower risk of cognitive progression with P = 2.42 × 10-6 compared to those with macro-haplogroup H. Exploratory analysis indicated that the common mitochondrial DNA variant, m.2706A>G, was associated with slower cognitive decline with a hazard ratio of 0.68 (95% confidence interval 0.56-0.81) and P = 2.46 × 10-5. Mitochondrial haplogroups were not appreciably linked to motor progression. This initial genetic survival study of the mitochondrial genome suggests that mitochondrial haplogroups may be associated with the pace of cognitive progression in Parkinson's disease over time.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Haplotipos , Mitocondrias/genética , ADN Mitocondrial/genética , Progresión de la Enfermedad , Cognición
15.
Nature ; 557(7705): 329-334, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769670

RESUMEN

The ability to repair or promote regeneration within the adult human brain has been envisioned for decades. Until recently, such efforts mainly involved delivery of growth factors and cell transplants designed to rescue or replace a specific population of neurons, and the results have largely been disappointing. New approaches using stem-cell-derived cell products and direct cell reprogramming have opened up the possibility of reconstructing neural circuits and achieving better repair. In this Review we briefly summarize the history of neural repair and then discuss these new therapeutic approaches, especially with respect to chronic neurodegenerative disorders.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Reprogramación Celular/fisiología , Regeneración Nerviosa/fisiología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Animales , Encéfalo/patología , Trasplante de Tejido Fetal , Humanos , Enfermedades Neurodegenerativas/fisiopatología , Trasplante de Células Madre
16.
Nature ; 560(7719): 494-498, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089906

RESUMEN

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.


Asunto(s)
Encéfalo/citología , Cresta Neural/metabolismo , Neuronas/citología , Empalme del ARN/genética , ARN/análisis , ARN/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Linaje de la Célula/genética , Células Cromafines/citología , Células Cromafines/metabolismo , Conjuntos de Datos como Asunto , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Cinética , Masculino , Ratones , Cresta Neural/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Transcripción Genética/genética
17.
Cell Mol Life Sci ; 80(2): 45, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36651994

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Anticuerpos
18.
PLoS Comput Biol ; 18(5): e1010079, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533200

RESUMEN

Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.


Asunto(s)
Apatía , Enfermedad de Parkinson , Clorhidrato de Atomoxetina/farmacología , Estudios Cruzados , Humanos , Norepinefrina , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico
19.
Brain ; 145(9): 3035-3057, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34936701

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Adulto , Autofagia/fisiología , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neuronas
20.
N Engl J Med ; 380(24): 2307-2316, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31059641

RESUMEN

BACKGROUND: Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. METHODS: We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. RESULTS: Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and -20%, -25%, -28%, -42%, and -38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). CONCLUSIONS: Intrathecal administration of HTTRx to patients with early Huntington's disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02519036.).


Asunto(s)
Proteína Huntingtina/antagonistas & inhibidores , Enfermedad de Huntington/tratamiento farmacológico , Nucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Proteína Huntingtina/líquido cefalorraquídeo , Proteína Huntingtina/genética , Inyecciones Espinales , Masculino , Persona de Mediana Edad , Mutación , Nucleótidos/síntesis química , Oligonucleótidos/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA