Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Hepatol ; 73(1): 140-148, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302728

RESUMEN

BACKGROUND & AIMS: Obesity and type 2 diabetes increase hepatocellular carcinoma (HCC) incidence in humans and accelerate diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. We investigated whether exercise reduces HCC development in obese/diabetic Alms1 mutant (foz/foz) mice and studied protective mechanisms. METHODS: We measured HCC development in DEN-injected male foz/foz and wild-type (WT) littermates housed with or without an exercise wheel from week 4 until 12 or 24 weeks, and in foz/foz mice pair-fed to WT littermates. We also studied HCC development in DEN-injected Jnk1-/-.foz/foz mice generated by cross breeding, as well as their genetic controls. Dysplastic hepatocytes were identified by glutathione-S-transferase pi form (GST-pi) immunohistochemistry, liver nodules were counted, and HCC was analysed by histopathology. RESULTS: Exercising foz/foz mice maintained similar weight as WT mice up to 10 weeks, but then gained weight and were obese by 24 weeks; a similar body weight profile was obtained by pair-feeding foz/foz mice to WT. At 12 weeks, livers of exercising foz/foz mice exhibited fewer GST-pi positive hepatocytes than sedentary counterparts; by 24 weeks, fewer exercising foz/foz mice developed HCC (15% vs. 64%, p <0.05). Conversely, pair-feeding foz/foz mice failed to reduce HCC incidence. In these insulin-resistant foz/foz mice, exercise failed to activate hepatic AMPK or Akt/mTORC1. Instead, it improved insulin sensitivity, ameliorated steatosis and liver injury, activated p53 to increase p27 expression, and prevented JNK activation. This was associated with suppression of hepatocellular proliferation. DEN-injected Jnk1-/-.foz/foz mice failed to develop liver tumours or HCC at 24 weeks. CONCLUSIONS: Direct effects of exercise dampen proliferation of dysplastic hepatocytes to reduce 3-month dysplastic foci and 6-month incidence of DEN-induced HCC in obese, insulin-resistant mice. The effects of exercise that potentially slow hepatocarcinogenesis include p53-mediated induction of p27 and prevention of JNK activation. LAY SUMMARY: Fatty liver disease commonly occurs alongside obesity and diabetes, contributing to rapidly increasing rates of liver cancer throughout the world. Herein, we show that exercise reduces the incidence and progression of hepatocellular carcinoma in mouse models. The effect of exercise on cancer risk was shown to be independent of changes in weight. Exercise could be a protective mechanism against liver cancer in at-risk individuals.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Actividad Motora/fisiología , Obesidad , Animales , Peso Corporal/fisiología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Inmunohistoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Obesos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Condicionamiento Físico Animal , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores Protectores , Factores de Riesgo , Proteína p53 Supresora de Tumor/metabolismo
2.
Exp Cell Res ; 356(1): 48-56, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28408319

RESUMEN

Dysplastic hepatocytes (DH) represent altered hepatocytes with potential for malignant transformation. To date, most research on pathways to hepatocarcinogenesis has focused on use of "hepatoma" cell lines derived from hepatocellular carcinoma (HCC). We describe a novel technique for deriving/culturing DH and demonstrate their utility for functional studies in vitro, compared to primary hepatocytes (PH) and HCC. PH and DH were prepared by portal vein collagenase perfusion from C57BL/6J mice. DH were subsequently subjected to FACS. HCC from diethylnitrosamine (DEN)-injected mice were mechanically isolated. Cell cycle analyses were performed by flow cytometry and PCNA immunohistochemistry. To establish utility of DH, we studied pathways of p53 turnover, apoptosis and cell proliferation using pfithrin-α (PFT) and nutlin-3. Like PH, DH were minimally proliferative compared to HCC. Only 30±0.03% of DH were in G2/M phase versus 51±0.01% of HCC; this difference corroborated with PCNA-immunostaining of dysplastic nodules from DEN-injected mice. In DH and HCC, nutlin-3 suppressed p53 mRNA, induced p53 and mdm2 activation but paradoxically resulted in increased anti-apoptotic and proliferative activity. Primary murine DH display distinctive biological characteristics compared with PH and HCC. As an intermediate cell type to HCC, they offer a new pathobiologically relevant primary cell culture system with which to interrogate the molecular changes in hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/patología , Hepatocitos/patología , Neoplasias Hepáticas Experimentales/patología , Hígado/patología , Animales , Apoptosis/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Células Cultivadas , Dietilnitrosamina , Activación Enzimática , Imidazoles/farmacología , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Clin Sci (Lond) ; 131(16): 2145-2159, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28687713

RESUMEN

Background and aims: TLR9 deletion protects against steatohepatitis due to choline-amino acid depletion and high-fat diet. We measured TLR9 in human non-alcoholic steatohepatitis (NASH) livers, and tested whether TLR9 mediates inflammatory recruitment in three murine models of non-alcoholic fatty liver disease (NAFLD). Methods: We assayed TLR mRNA in liver biopsies from bariatric surgery patients. Wild-type (Wt), appetite-dysregulated Alms1 mutant (foz/foz), Tlr9-/-, and Tlr9-/-foz/foz C57BL6/J mice and bone marrow (BM) chimeras were fed 0.2% cholesterol, high-fat, high sucrose (atherogenic[Ath]) diet or chow, and NAFLD activity score (NAS)/NASH pathology, macrophage/neutrophil infiltration, cytokines/chemokines, and cell death markers measured in livers. Results: Hepatic TLR9 and TLR4 mRNA were increased in human NASH but not simple steatosis, and in Ath-fed foz/foz mice with metabolic syndrome-related NASH. Ath-fed Tlr9-/- mice showed simple steatosis and less Th1 cytokines than Wt. Tlr9-/-foz/foz mice were obese and diabetic, but necroinflammatory changes were less severe than Tlr9+/+.foz/foz mice. TLR9-expressing myeloid cells were critical for Th1 cytokine production in BM chimeras. BM macrophages from Tlr9-/- mice showed M2 polarization, were resistant to M1 activation by necrotic hepatocytes/other pro-inflammatory triggers, and provoked less neutrophil chemotaxis than Wt Livers from Ath-fed Tlr9-/- mice appeared to exhibit more markers of necroptosis [receptor interacting protein kinase (RIP)-1, RIP-3, and mixed lineage kinase domain-like protein (MLKL)] than Wt, and ∼25% showed portal foci of mononuclear cells unrelated to NASH pathology. CONCLUSION: Our novel clinical data and studies in overnutrition models, including those with diabetes and metabolic syndrome, clarify TLR9 as a pro-inflammatory trigger in NASH. This response is mediated via M1-macrophages and neutrophil chemotaxis.


Asunto(s)
Mediadores de Inflamación/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 9/biosíntesis , Regulación hacia Arriba/fisiología , Adiponectina/deficiencia , Adulto , Animales , Cirugía Bariátrica , Biopsia , Células Cultivadas , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Hepatocitos/metabolismo , Hepatomegalia/prevención & control , Humanos , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Síndrome Metabólico/metabolismo , Errores Innatos del Metabolismo/prevención & control , Ratones Noqueados , Neutrófilos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/prevención & control , ARN Mensajero/genética , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética
4.
J Gastroenterol Hepatol ; 31(6): 1210-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26574916

RESUMEN

BACKGROUND AND AIM: While gender differences in hepatocellular carcinoma (HCC) are profound, the mechanism is unclear. Using castration and hormone replacement strategies, we tested whether these gender differences are attributable to testosterone or estradiol/progesterone effects on cell cycle regulators and p53. METHODS: We studied dysplastic liver and HCCs in intact and castrated diethylnitrosamine-injected C57BL/6J male and female mice, with or without hormonal replacement. Effects of sex steroids on proliferation and survival of primary hepatocytes and primary HCC cells were also characterized. RESULTS: Diethylnitrosamine-injected female mice displayed fewer dysplastic foci and slower onset of HCC than male mice, with smaller/more differentiated tumors and fewer metastases. Castration of diethylnitrosamine-injected male mice reduced cyclin E kinase and augmented hepatocyte apoptosis compared with intact male mice; estradiol/progesterone enhanced these effects. In intact female mice, cyclin E kinase activity was less than in males; testosterone administered to ovariectomized female mice upregulated cyclin E, increased cyclin E kinase, and accelerated hepatocarcinogenesis. In vitro, testosterone increased expression of cell cycle regulators (cyclin D1, cyclin E, and cyclin-dependent kinase 2) and reduced p53 and p21, which enhanced hepatocyte viability. In contrast, estradiol both suppressed hepatocyte cell cycle markers, upregulated p53 and reduced viability of hepatocytes and HCC cells. CONCLUSIONS: Testosterone is the positive regulator of hepatocyte cell cycle via cyclin E, while estradiol plays a negative role by effects of p53 and p21. Together, both sex hormones determine the male predominance of gender differences in hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Transformación Celular Neoplásica/inducido químicamente , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Terapia de Reemplazo de Hormonas/efectos adversos , Neoplasias Hepáticas Experimentales/enzimología , Testosterona/farmacología , Testosterona/toxicidad , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Castración , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dietilnitrosamina , Estradiol/toxicidad , Terapia de Reemplazo de Estrógeno/efectos adversos , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones Endogámicos C57BL , Cultivo Primario de Células , Factores Sexuales , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
5.
Hepatol Commun ; 1(7): 663-674, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29404484

RESUMEN

Lipotoxicity associated with insulin resistance is central to nonalcoholic steatohepatitis (NASH) pathogenesis. To date, only weight loss fully reverses NASH pathology, but mixed peroxisome proliferator-activated receptor-alpha/delta (PPAR-α/δ) agonists show some efficacy. Seladelpar (MBX-8025), a selective PPAR-δ agonist, improves atherogenic dyslipidemia. We therefore used this agent to test whether selective PPAR-δ activation can reverse hepatic lipotoxicity and NASH in an obese, dyslipidemic, and diabetic mouse model. From weaning, female Alms1 mutant (foz/foz) mice and wild-type littermates were fed an atherogenic diet for 16 weeks; groups (n = 8-12) were then randomized to receive MBX-8025 (10 mg/kg) or vehicle (1% methylcellulose) by gavage for 8 weeks. Despite minimally altering body weight, MBX-8025 normalized hyperglycemia, hyperinsulinemia, and glucose disposal in foz/foz mice. Serum alanine aminotransferase ranged 300-600 U/L in vehicle-treated foz/foz mice; MBX-8025 reduced alanine aminotransferase by 50%. In addition, MBX-8025 normalized serum lipids and hepatic levels of free cholesterol and other lipotoxic lipids that were increased in vehicle-treated foz/foz versus wild-type mice. This abolished hepatocyte ballooning and apoptosis, substantially reduced steatosis and liver inflammation, and improved liver fibrosis. In vehicle-treated foz/foz mice, the mean nonalcoholic fatty liver disease activity score was 6.9, indicating NASH; MBX-8025 reversed NASH in all foz/foz mice (nonalcoholic fatty liver disease activity score 3.13). Conclusion: Seladelpar improves insulin sensitivity and reverses dyslipidemia and hepatic storage of lipotoxic lipids to improve NASH pathology in atherogenic diet-fed obese diabetic mice. Selective PPAR-δ agonists act independently of weight reduction, but counter lipotoxicity related to insulin resistance, thereby providing a novel therapy for NASH. (Hepatology Communications 2017;1:663-674).

6.
Obesity (Silver Spring) ; 25(1): 155-165, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27804232

RESUMEN

OBJECTIVE: Nonalcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients but for unknown reasons does not resolve NASH pathology. This study therefore investigated OCA effects in Wt mice, which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet, which develop metabolic obesity and diabetes. METHODS: OCA (1 mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. Adipose indices, glucose tolerance, and fatty liver pathology were studied. Experiments were repeated with OCA 10 mg/kg. RESULTS: OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favor of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure number in visceral adipose tissue. foz/foz mice showed more crown-like structures in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10 mg/kg. CONCLUSIONS: OCA improved adipose indices, glucose tolerance, and steatosis in a milder metabolic phenotype but failed to improve these factors in morbidly obese diabetic mice. These results help explain OCA's limited efficacy to reverse human NASH.


Asunto(s)
Adiposidad/efectos de los fármacos , Ácido Quenodesoxicólico/análogos & derivados , Hígado Graso/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Ácido Quenodesoxicólico/farmacología , Dieta Aterogénica , Modelos Animales de Enfermedad , Femenino , Hígado/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Obesos , Aumento de Peso
7.
J Clin Transl Res ; 2(1): 26-37, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30873458

RESUMEN

BACKGROUND: There are strong links between obesity, diabetes and hepatocellular carcinoma (HCC), but molecular mechanisms remain unclear. AIM: We tested the proposed involvement of NF-κB, IL-6/STAT3 and Akt/mTORC1 before onset (at 3 months) and at onset (6 months) of accelerated hepatocarcinogenesis in DEN-injected obese and diabetic foz/foz compared to lean wildtype (Wt) mice, and also studied the hepatocyte proliferative response to DNA damage between the obese and lean lines. METHODS: Male foz/foz and Wt littermates fed normal chow were DEN-injected (10mg/kg i.p.) at age 12-15 days. To test the effect of mTOR inhibitor on growth of dysplastic hepatocytes, a separate cohort of DEN-injected foz/foz mice was administered rapamycin (4 mg/kg body weight/day). RESULTS: foz/foz mice developed obesity, hyperinsulinemia, diabetes, adipokine dysregulation and fatty liver, without increased serum or liver TNF-α or serum IL-6. All DEN-injected foz/foz mice developed HCC by 6 mths vs. 0/10 lean Wt. At 3 mths, there were more dysplastic hepatocytes in DEN-injected foz/foz than Wt, with increased liver injury (serum ALT), hepatocyte apoptosis (M30-positive cells) and proliferation (cyclin D1, cyclin E, PCNA), but neither NF-κB nor STAT3 activation. foz/foz livers exhibited upregulation of DNA damage sensors ATM and ATR, with inadequate cell cycle checkpoint controls (CHK1, CHK2, p53, p21). Akt and mTORC1 were highly activated in livers from foz/foz vs. Wt mice. Despite such activation, rapamycin failed to reduce growth of dysplastic hepatocytes. CONCLUSIONS: Accelerated DEN-induced HCC in obese/diabetic mice is linked to enhanced growth of dysplastic hepatocytes that cannot be attributed to NF-κB or IL-6/STAT3 activation, nor to sustained mTORC1 activation. The critical mechanism for obesity-enhanced hepatocarcinogenesis lies in the disconnection between hepatocellular injury with DNA damage, and an unrestrained proliferative response. RELEVANCE FOR PATIENTS: This study supports the epidemiological data linking obesity, diabetes and fatty liver disease with increased risk for developing HCC. The findings also suggest that mTORC1 inhibition may not be beneficial in the prevention of obesity-related hepatocarcinogenesis.

8.
Obesity (Silver Spring) ; 23(9): 1845-55, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26250514

RESUMEN

OBJECTIVE: Adipose inflammation and dysfunction underlie metabolic obesity. Exercise improves glycemic control and metabolic indices, but effects on adipose function and inflammation are less clear. Accordingly, it was hypothesized that exercise improves adipose morphometry to reduce adipose inflammation in hyperphagic obese mice. METHODS: Alms1 mutant foz/foz mice housed in pairs were fed an atherogenic or chow diet; half the cages were fitted with a computer-monitored wheel for voluntary exercise. Insulin-induced AKT-phosphorylation, adipocyte size distribution, and inflammatory recruitment were studied in visceral versus subcutaneous depots, and severity of fatty liver disease was determined. RESULTS: Exercise prevented obesity and diabetes development in chow-fed foz/foz mice and delayed their onset in atherogenic-fed counterparts. Insulin-stimulated phospho-AKT levels in muscle were improved with exercise, but not in adipose or liver. Exercise suppressed adipose inflammatory recruitment, particularly in visceral adipose, associated with an increased number of small adipocyte subpopulations, and enhanced expression of beige adipocyte factor PRDM16 in subcutaneous fat. In atherogenic-fed foz/foz mice liver, exercise suppressed development of nonalcoholic steatohepatitis and related liver fibrosis. CONCLUSIONS: Exercise confers metabo-protective effects in atherogenic-fed hyperphagic mice by preventing early onset of obesity and diabetes in association with enhanced muscle insulin sensitivity, improved adipose morphometry, and suppressed adipose and liver inflammation.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Inflamación/complicaciones , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/complicaciones , Condicionamiento Físico Animal/métodos , Animales , Ratones , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA