Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 37(1): 19-38, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29150432

RESUMEN

The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-ß production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Factor 3 Regulador del Interferón/metabolismo , Macrófagos/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Factor 3 Regulador del Interferón/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
2.
Am J Physiol Regul Integr Comp Physiol ; 309(9): R1144-52, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26377563

RESUMEN

Inflammatory lung diseases (e.g., pneumonia and acute respiratory distress syndrome) are associated with hyperglycemia, even in patients without a prior diagnosis of Type 2 diabetes. It is unknown whether the lung inflammation itself or the accompanying comorbidities contribute to the increased risk of hyperglycemia and insulin resistance. To investigate whether inflammatory signaling by airway epithelial cells can induce systemic insulin resistance, we used a line of doxycycline-inducible transgenic mice that express a constitutive activator of the NF-κB in airway epithelial cells. Airway inflammation with accompanying neutrophilic infiltration was induced with doxycycline over 5 days. Then, hyperinsulinemic-euglycemic clamps were performed in chronically catheterized, conscious mice to assess insulin action. Lung inflammation decreased the whole body glucose requirements and was associated with secondary activation of inflammation in multiple tissues. Metabolic changes occurred in the absence of hypoxemia. Lung inflammation markedly attenuated insulin-induced suppression of hepatic glucose production and moderately impaired insulin action in peripheral tissues. The hepatic Akt signaling pathway was intact, while hepatic markers of inflammation and plasma lactate were increased. As insulin signaling was intact, the inability of insulin to suppress glucose production in the liver could have been driven by the increase in lactate, which is a substrate for gluconeogenesis, or due to an inflammation-driven signal that is independent of Akt. Thus, localized airway inflammation that is observed during inflammatory lung diseases can contribute to systemic inflammation and insulin resistance.


Asunto(s)
Glucemia/metabolismo , Resistencia a la Insulina , Insulina/sangre , Pulmón/metabolismo , FN-kappa B/metabolismo , Neumonía/metabolismo , Animales , Asma , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Cardiovasc Diabetol ; 14: 56, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25986700

RESUMEN

BACKGROUND: Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS: The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS: NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION: Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.


Asunto(s)
Factores Relajantes Endotelio-Dependientes/farmacología , Glucosa/metabolismo , Corazón/efectos de los fármacos , Resistencia a la Insulina , Lipopolisacáridos/farmacología , Músculo Esquelético/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico/farmacología , Animales , Presión Arterial/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Quimiocina CCL2/genética , Ecocardiografía , Expresión Génica , Técnica de Clampeo de la Glucosa , Inflamación , Interleucina-6/genética , Ratones , Ratones Noqueados , Microesferas , Células Musculares/efectos de los fármacos , Células Musculares/inmunología , Células Musculares/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Serpina E2/genética , Factor de Necrosis Tumoral alfa/genética
4.
Am J Physiol Endocrinol Metab ; 307(10): E896-905, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25205821

RESUMEN

Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.


Asunto(s)
Encéfalo/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Interleucina-6/genética , Animales , Encéfalo/efectos de los fármacos , Epinefrina/farmacología , Glucagón/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Hipoglucemia/metabolismo , Interleucina-6/metabolismo , Islotes Pancreáticos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Fisiológico , Simpatomiméticos/farmacología
5.
Diabetes ; 71(11): 2297-2312, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35983955

RESUMEN

The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.


Asunto(s)
Hiperglucemia , Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/genética , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Sirolimus/farmacología , Insulina/metabolismo , Obesidad/genética , Ratones Obesos , Hiperglucemia/genética , Glucosa , Proteínas Serina-Treonina Quinasas/genética
6.
Mol Metab ; 32: 168-175, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029227

RESUMEN

BACKGROUND: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet-unidentified signal (Signal 2) that is important for leptin action. Signal 2 requires LepRb regions in addition to those required for JAK2 activation but operates independently of STAT3 and LepRb phosphorylation sites. METHODS: To identify LepRb sequences that mediate Signal 2, we used CRISPR/Cas9 to generate five novel mouse lines containing COOH-terminal truncation mutants of LepRb. We analyzed the metabolic phenotype and measures of hypothalamic function for these mouse lines. RESULTS: We found that deletion of LepRb sequences between residues 921 and 960 dramatically worsens metabolic control and alters hypothalamic function relative to smaller truncations. We also found that deletion of the regions including residues 1013-1053 and 960-1013 each decreased obesity compared to deletions that included additional COOH-terminal residues. CONCLUSIONS: LepRb sequences between residues 921 and 960 mediate the STAT3 and LepRb phosphorylation-independent second signal that contributes to the control of energy balance and metabolism by leptin/LepRb. In addition to confirming the inhibitory role of the region (residues 961-1013) containing Tyr985, we also identified the region containing residues 1013-1053 (which contains no Tyr residues) as a second potential mediator of LepRb inhibition. Thus, the intracellular domain of LepRb mediates multiple Tyr-independent signals.


Asunto(s)
Receptores de Leptina/genética , Factor de Transcripción STAT3/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal
7.
Sci Signal ; 12(585)2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186373

RESUMEN

AMP-activated protein kinase (AMPK) senses energetic stress and, in turn, promotes catabolic and suppresses anabolic metabolism coordinately to restore energy balance. We found that a diverse array of AMPK activators increased mTOR complex 2 (mTORC2) signaling in an AMPK-dependent manner in cultured cells. Activation of AMPK with the type 2 diabetes drug metformin (GlucoPhage) also increased mTORC2 signaling in liver in vivo and in primary hepatocytes in an AMPK-dependent manner. AMPK-mediated activation of mTORC2 did not result from AMPK-mediated suppression of mTORC1 and thus reduced negative feedback on PI3K flux. Rather, AMPK associated with and directly phosphorylated mTORC2 (mTOR in complex with rictor). As determined by two-stage in vitro kinase assay, phosphorylation of mTORC2 by recombinant AMPK was sufficient to increase mTORC2 catalytic activity toward Akt. Hence, AMPK phosphorylated mTORC2 components directly to increase mTORC2 activity and downstream signaling. Functionally, inactivation of AMPK, mTORC2, and Akt increased apoptosis during acute energetic stress. By showing that AMPK activates mTORC2 to increase cell survival, these data provide a potential mechanism for how AMPK paradoxically promotes tumorigenesis in certain contexts despite its tumor-suppressive function through inhibition of growth-promoting mTORC1. Collectively, these data unveil mTORC2 as a target of AMPK and the AMPK-mTORC2 axis as a promoter of cell survival during energetic stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Metabolismo Energético , Hepatocitos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular , Supervivencia Celular , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Shock ; 45(6): 677-85, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26682946

RESUMEN

Lipopolysaccharide (LPS) is known to impair insulin-stimulated muscle glucose uptake (MGU). We determined if increased glucose transport (GLUT4) or phosphorylation capacity (hexokinase II; HKII) could overcome the impairment in MGU. We used mice that overexpressed GLUT4 (GLUT4) or HKII (HK) in skeletal muscle. Studies were performed in conscious, chronically catheterized (carotid artery and jugular vein) mice. Mice received an intravenous bolus of either LPS (10 µg/g body weight) or vehicle (VEH). After 5 h, a hyperinsulinemic-euglycemic clamp was performed. As MGU is also dependent on cardiovascular function that is negatively affected by LPS, cardiac function was assessed using echocardiography. LPS decreased whole body glucose disposal and MGU in wild-type (WT) and HK mice. In contrast, the decrease was attenuated in GLUT4 mice. Although membrane-associated GLUT4 was increased in VEH-treated GLUT4 mice, LPS impaired membrane-associated GLUT4 in GLUT4 mice to the same level as LPS-treated WT mice. This suggested that overexpression of GLUT4 had further benefits beyond preserving transport activity. In fact, GLUT4 overexpression attenuated the LPS-induced decrease in cardiac function. The maintenance of MGU in GLUT4 mice following LPS was accompanied by sustained anaerobic glycolytic flux as suggested by increased muscle Pdk4 expression, and elevated lactate availability. Thus, enhanced glucose transport, but not phosphorylation capacity, ameliorates LPS-induced impairments in MGU. This benefit is mediated by long-term adaptations to the overexpression of GLUT4 that sustain muscle anaerobic glycolytic flux and cardiac function in response to LPS.


Asunto(s)
Glucemia/metabolismo , Insulina/metabolismo , Lipopolisacáridos/metabolismo , Músculo Esquelético/metabolismo , Fosforilación , Animales , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA