Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33229368

RESUMEN

During passage through the human gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) is exposed to membrane-damaging bile in the small intestine. We previously reported that EHEC treatment with a physiological bile salt mixture upregulates basRS, encoding a two-component system, and arnBCADTEF, encoding the aminoarabinose lipid A modification pathway (J. V. Kus, A. Gebremedhin, V. Dang, S. L. Tran, A. Serbanescu, and D. Barnett Foster, J Bacteriol 193: 4509-4515, 2011, https://doi.org/10.1128/JB.00200-11). The present study examined the effect of bile salt mix (BSM) treatment on EHEC resistance to three human gastrointestinal defense peptides-HD-5, HNP-1, and LL-37-as well as the role of basRS and arnT in the respective responses. After BSM treatment, EHEC resistance to HD-5 and HNP-1 was significantly increased in a BSM-, defensin dose-dependent manner. The resistance phenotype was dependent on both basRS and arnT However, the BSM treatment did not alter EHEC resistance to LL-37, even when the ompT gene, encoding an LL-37 cleavage protease, was disrupted. Interestingly, enteropathogenic E. coli, a related pathogen that infects the small intestine, showed a similar BSM-induced resistance phenotype. Using a model of EHEC infection in Galleria mellonella, we found significantly lower survival rates in wax moth larvae infected with BSM-treated wild-type EHEC than in those infected with a BSM-treated basS mutant, suggesting that treatment with a physiological BSM enhances virulence through a basS-mediated pathway. The results of this investigation provide persuasive evidence that bile salts typically encountered during transit through the small intestine can serve as an environmental cue for EHEC, enhancing resistance to several key host defense peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Ácidos y Sales Biliares/uso terapéutico , Resistencia a la Enfermedad/efectos de los fármacos , Escherichia coli Enterohemorrágica/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Virulencia/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/patología , Humanos
2.
J Bacteriol ; 202(11)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32229529

RESUMEN

Dps, a DNA-binding protein from starved cells in Escherichia coli, is part of the bacterial defense system that protects DNA against various cellular stresses. Our lab previously demonstrated that a novel antimicrobial peptide, WRWYCR, enhances acid-induced killing of enterohemorrhagic Escherichia coli (EHEC) and ameliorates infection in a Citrobacter rodentium mouse model of EHEC infection. WRWYCR has previously been shown to compromise DNA damage repair and to increase chelatable iron within the cell. These findings, combined with the effects of peptide and acid stress on DNA damage, suggest a key defense role for Dps in peptide-induced killing of EHEC. The goal of this study is to evaluate the role of Dps in peptide-induced killing of EHEC through survival assays and flow cytometric analyses of DNA damage and hydroxyl radical formation. Our results demonstrate that disruption of the dps gene in stationary-phase EHEC O157:H7 cells, but not in exponential-phase cells, enhances acid-, peptide-, and peptide-acid-induced killing relative to that of wild-type (WT) EHEC. Using flow cytometric analysis, we have also demonstrated increased levels of hydroxyl radicals in peptide-treated wild-type EHEC relative to those in the untreated control. Disruption of the dps gene further increases this. These findings indicate that peptide treatment of EHEC enhances the formation of hydroxyl radicals, likely through the Fenton reaction, thereby contributing to the killing action of the peptide, and that dps protects against peptide killing of EHEC. This study provides important insights into peptide WRWYCR-mediated killing of EHEC, which could be exploited in the development of more effective antimicrobials.IMPORTANCE The research presented in this paper explores the role of the DNA-binding protein Dps as a key defense mechanism of enterohemorrhagic Escherichia coli (EHEC) strains in protecting against killing by the novel antimicrobial peptide WRWYCR. Our results demonstrate that Dps protects against peptide-induced killing of EHEC through direct protection against acid stress and hydroxyl radical formation, both of which are mechanisms targeted by the antimicrobial peptide. This study provides important insights into peptide WRWYCR-mediated killing of EHEC, which could be exploited in the development of more effective antimicrobials through specific targeting of Dps in order to allow a more potent response to the antimicrobial WRWYCR.


Asunto(s)
Ácidos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli O157/genética , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Ratones
3.
Microbiology (Reading) ; 166(12): 1149-1159, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33205745

RESUMEN

Colonization of the gastrointestinal tract by enterohaemorrhagic Escherichia coli (EHEC) is critically dependent on its ability to sense and respond to various microenvironments within the host. EHEC exposure to physiologically relevant levels of bile salts upregulates the two-component system, pmrAB, and the arnBCADTEF operon, resulting in lipopolysaccharide modification and increased resistance to the cationic antimicrobial peptide, polymyxin B (PMB). A similar pmrAB- and arn-dependent PMB resistance has been observed in Salmonella enterica in the presence of ferric iron. Limiting magnesium levels and mild acid can also induce Salmonella resistance to PMB through another two-component system, PhoPQ and the connector protein, PmrD. This study aims to evaluate the relative contributions of a bile-salt mix (BSM), iron, limiting magnesium as well as the roles of pmrAB, phoPQ and pmrD to EHEC's resistance to PMB. Killing assays show that EHEC treatment with the BSM or iron under excess magnesium and neutral pH conditions induces a pmrAB-dependent, phoP-independent PMB resistance. By contrast, exposure to limiting magnesium triggers a pmrB-, phoP- and pmrD-dependent PMB resistance. The iron-induced PMB resistance is independent of phoP and pmrD under limiting magnesium conditions while the bile-salt-induced PMB resistance is independent of pmrD only under non-PhoP-inducing conditions. GFP-pmrD transcriptional reporter studies reveal that the limiting magnesium enhances pmrD expression, which is repressed upon additional exposure to either BSM or iron. Our results also show that exposure to mild acid enhances PMB resistance in a pmrD-independent manner and GFP reporter results confirm minimal expression of pmrD at this pH regardless of the magnesium level. This study provides novel insights into how EHEC differentially employs PmrAB, PhoPQ and PmrD to monitor and respond to bile salts, iron, acidic pH and magnesium typically encountered within the gastrointestinal tract in order to modulate its survival against cationic antimicrobial peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Ácidos y Sales Biliares/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli Enterohemorrágica/fisiología , Hierro/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli Enterohemorrágica/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Magnesio/metabolismo , Polimixina B/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Microbiology (Reading) ; 162(10): 1761-1772, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27535670

RESUMEN

During passage through the gastrointestinal tract, enterohaemorrhagic Escherichia coli (EHEC) encounters numerous stresses, each producing unique antimicrobial conditions. Beyond surviving these stresses, EHEC may also use them as cues about the local microenvironment to modulate its virulence. Of particular interest is how exposure to changing concentrations of short-chain fatty acids (SCFAs) associated with passage through the small and large intestines affects EHEC virulence, as well as flagella expression and motility specifically. In this study, we investigate the impact of exposure to SCFA mixes simulating concentrations and compositions within the small and large intestines on EHEC flagella expression and function. Using a combination of DNA microarray, quantitative real-time PCR, immunoblot analysis, flow cytometry and motility assays, we show that there is a marked, significant upregulation of flagellar genes, the flagellar protein, FliC, and motility when EHEC is exposed to SCFA mixes representative of the small intestine. By contrast, when EHEC is exposed to SCFA mixes representative of the large intestine, there is a significant downregulation of flagellar genes, FliC and motility. Our results demonstrate that EHEC modulates flagella expression and motility in response to SCFAs, with differential responses associated with SCFA mixes typical of the small and large intestines. This research contributes to our understanding of how EHEC senses and responds to host environmental signals and the mechanisms it uses to successfully infect the human host. Significantly, it also suggests that EHEC is using this key gastrointestinal chemical signpost to cue changes in flagella expression and motility in different locations within the host intestinal tract.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli O157/metabolismo , Ácidos Grasos Volátiles/metabolismo , Flagelos/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/genética , Regulación Bacteriana de la Expresión Génica , Humanos
5.
Microbiology (Reading) ; 162(9): 1641-1650, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27412446

RESUMEN

Citrobacter rodentium is a Gram-negative, murine-specific enteric pathogen that infects epithelial cells in the colon. It is closely related to the clinically relevant human pathogen, enterohemorrhagic Escherichia coli (EHEC), a leading cause of haemorrhagic colitis and haemolytic uremic syndrome. We have previously reported that a novel antimicrobial peptide, wrwycr, compromises bacterial DNA repair and significantly reduces the survival of acid-stressed EHEC, suggesting an antimicrobial strategy for targeting the survival of ingested EHEC. This study examines the impact of peptide pretreatment on survival of the closely related murine pathogen, C. rodentium, before and after acid stress, using both in vitro and in vivo investigations. Peptide pretreatment of C. rodentium significantly and dramatically increases acid-stress-induced killing in a peptide-dose-dependent and time-dependent manner. Reduction in survival rates after brief pretreatment with peptide (25-65 µM) followed by 1 h at pH 3.5 ranges from 6 to 8 log fold relative to untreated C. rodentium, with no detectable bacteria after 65 µM peptide-acid treatment. Using a C57BL/6 mouse model of infection, peptide pretreatment of C. rodentium with wrwycr prior to orogastric gavage eliminates evidence of infection based on C. rodentium colonization levels, faecal scores, colonic histology, faecal microbiome and visual observation of overall animal health. These findings provide compelling evidence for the role of the peptide wrwycr as a potential strategy to control the growth and colonization of enteric pathogens.


Asunto(s)
Ácidos/farmacología , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Citrobacter rodentium/efectos de los fármacos , Infecciones por Enterobacteriaceae/prevención & control , Animales , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/fisiología , Colon/microbiología , Infecciones por Enterobacteriaceae/microbiología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL
6.
Microbiology (Reading) ; 158(Pt 9): 2399-2407, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22767547

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) survives exposure to acute acid stress during gastric passage and progresses to colonize the large intestine. We previously reported that acid stress significantly increases host adhesion of EHEC O157 : H7 and is associated with a coincident upregulation of the expression of a putative adhesin gene, yadK. Further gene expression analysis now confirms that yadK is minimally transcribed under unstressed conditions and is significantly upregulated under acid stress. Immunoblotting with an anti-YadK polyclonal antiserum demonstrates that YadK protein is also upregulated after acid stress. Disruption of yadK results in loss of the acid-induced adhesion increase seen for wild-type EHEC to human epithelial cells in vitro and complementation in trans fully restores the acid-induced adhesion phenotype to the wild-type level. Significantly, no difference is observed in adhesion of the unstressed yadK mutant relative to wild-type, indicating that YadK does not play a role in adhesion of unstressed EHEC. Anti-YadK antiserum inhibits the acid-induced adhesion enhancement of EHEC but has no effect on adhesion of unstressed EHEC. There is no significant difference in the viability of either the unstressed or the acid-stressed yadK mutant relative to the similarly treated wild-type, suggesting that yadK is not involved in acid tolerance. These results provide persuasive evidence that YadK plays a significant role in the adhesion of acid-stressed EHEC to epithelial cells, and support a role for acid stress as a factor which may regulate bacteria-host attachment and lead to increased EHEC colonization and virulence.


Asunto(s)
Ácidos/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Estrés Fisiológico , Línea Celular , Escherichia coli O157/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Humanos
7.
J Bacteriol ; 193(17): 4509-15, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21725004

RESUMEN

Many enteric bacteria use bile as an environmental cue to signal resistance and virulence gene expression. Microarray analysis of enterohemorrhagic Escherichia coli O157:H7 (EHEC) treated with bile salts revealed upregulation of genes for an efflux system (acrAB), a two-component signal transduction system (basRS/pmrAB), and lipid A modification (arnBCADTEF and ugd). Bile salt treatment of EHEC produced a basS- and arnT-dependent resistance to polymyxin.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Escherichia coli O157/genética , Polimixinas/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidad , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Análisis por Micromatrices , Porinas/genética , Porinas/metabolismo , Toxina Shiga/genética , Toxina Shiga/metabolismo , Transducción de Señal , Regulación hacia Arriba
8.
Sci Rep ; 10(1): 10029, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572054

RESUMEN

Infection with Shiga toxin-producing Escherichia coli (STEC) results in hemorrhagic colitis and can lead to life-threatening sequelae including hemolytic uremic syndrome (HUS). Conventional treatment is intravenous fluid volume expansion. Antibiotic treatment is contraindicated, due in part to the elevated risk of HUS related to increased Shiga toxin (Stx) release associated with some antibiotics. Given the lack of effective strategies and the increasing number of STEC outbreaks, new treatment approaches are critically needed. In this study, we used an antimicrobial peptide wrwycr, previously shown to enhance STEC killing without increasing Stx production, in combination with antibiotic treatments. Checkerboard and time-kill assays were used to assess peptide wrwycr-antibiotic combinations for synergistic STEC killing. Cytotoxicity and real-time PCR were used to evaluate Stx production and stx expression, respectively, associated with these combinations. The synergistic combinations that showed rapid killing, no growth recovery and minimal Stx production were peptide wrwycr-kanamycin/gentamicin. Transmission electron microscopy revealed striking differences in bacterial cell morphology associated with various treatments. This study provides proof of principle for the design of an antibiotic-peptide wrwycr combination effective in killing STEC without enhancing release of Shiga toxins. It also offers a strategy for the repurposing of antibiotics for treatment of STEC infection.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli O157/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacología , Antibacterianos/administración & dosificación , Cloranfenicol/administración & dosificación , Cloranfenicol/farmacología , Ciprofloxacina/administración & dosificación , Ciprofloxacina/farmacología , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Gentamicinas/administración & dosificación , Gentamicinas/farmacología , Humanos , Kanamicina/administración & dosificación , Kanamicina/farmacología , Meropenem/administración & dosificación , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/administración & dosificación , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Virulence ; 4(4): 315-23, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23552827

RESUMEN

Enteric pathogens must not only survive passage through the gastrointestinal tract but must also coordinate expression of virulence determinants in response to localized microenvironments with the host. Enterohemorrhagic Escherichia coli (EHEC), a serious food and waterborne human pathogen, is well equipped with an arsenal of molecular factors that allows it to survive passage through the gastrointestinal tract and successfully colonize the large intestine. This review will explore how EHEC responds to various environmental cues associated with particular microenvironments within the host and how it employs these cues to modulate virulence factor expression, with a view to developing a conceptual framework for understanding modulation of EHEC's virulence program in response to the host. In vitro studies offer significant insights into the role of individual environmental cues but in vivo studies using animal models as well as data from natural infections will ultimately provide a more comprehensive picture of the highly regulated virulence program of this pathogen.


Asunto(s)
Escherichia coli Enterohemorrágica/fisiología , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/microbiología , Tracto Gastrointestinal/microbiología , Interacciones Huésped-Patógeno , Animales , Humanos
10.
J Infect Dis ; 192(8): 1430-40, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16170762

RESUMEN

BACKGROUND: Enteropathogenic Escherichia coli (EPEC), a diarrheagenic pathogen, is exposed to stress during ingestion, and yet little is known about the impact of stress on EPEC-host cell adhesion. METHODS: EPEC adhesion to human epithelial cells was assessed by plate-count assay before and after bacterial stress. Stress treatments included exposure to low pH (with or without acid adaptation) and exposure to physiological concentrations of 4 intestinal bile salts. Expression of bacterial adhesins after stress was assessed by immunoblot and flow-cytometric analysis. Bacteria-lipid binding was determined by thin-layer chromatography overlay assay. RESULTS: Brief low-pH stress (with or without acid adaptation) and bile-salt stress resulted in significantly increased EPEC-host cell adhesion. Erythromycin pretreatment eliminated the adhesion enhancement, suggesting that protein synthesis was required. Immunoblot and flow-cytometric analysis indicated little change in expression of known adhesins after either stress. However, we found increased surface expression of a heat-shock protein 70 (Hsp70) on acid-shocked EPEC, and pretreatment with anti-Hsp70 eliminated the adhesion enhancement after acid stress. Acid shock also correlated with increased binding to sulfogalactosylceramide, a putative receptor for other pathogens after stress. CONCLUSIONS: Acid/bile-salt stress of EPEC significantly enhances adhesion to host cells, and a novel adhesin-receptor pair may play a role in the adhesion.


Asunto(s)
Ácidos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Ácidos y Sales Biliares/farmacología , Células Epiteliales/metabolismo , Escherichia coli/efectos de los fármacos , Mucosa Intestinal/microbiología , Receptores de Superficie Celular/metabolismo , Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana/fisiología , Técnicas de Cultivo de Célula , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Proteínas HSP70 de Choque Térmico , Humanos , Mucosa Intestinal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA