Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 52(3): 393-405, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24120663

RESUMEN

Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.


Asunto(s)
Segregación Cromosómica/genética , Citocinesis/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa CDC2/metabolismo , Cromosomas/genética , Ciclina B/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Fosfatasas , Separasa/genética , Separasa/metabolismo , Transducción de Señal/genética
2.
Am J Hum Genet ; 101(3): 441-450, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28823706

RESUMEN

Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.


Asunto(s)
Enfermedades Cerebelosas/genética , Proteínas Activadoras de GTPasa/genética , Homocigoto , Microcefalia/genética , Mutación , Adolescente , Animales , Enfermedades Cerebelosas/patología , Niño , Preescolar , Femenino , Células HeLa , Humanos , Masculino , Microcefalia/patología , Linaje , Fenotipo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
Am J Hum Genet ; 93(6): 1001-14, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24239381

RESUMEN

blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first positionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation of bs mouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endocrine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM. Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bs mEFs. Additionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These findings collectively indicate that a defect in LD formation/metabolism may be a common cellular abnormality associated with WARBM, although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology.


Asunto(s)
Anomalías Múltiples/genética , Catarata/congénito , Catarata/genética , Córnea/anomalías , Hipogonadismo/genética , Infertilidad Masculina/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación , Atrofia Óptica/genética , Proteínas de Unión al GTP rab1/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/patología , Catarata/diagnóstico , Catarata/metabolismo , Línea Celular , Córnea/metabolismo , Análisis Mutacional de ADN , Facies , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Hipogonadismo/diagnóstico , Hipogonadismo/metabolismo , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/metabolismo , Cristalino/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Microcefalia/diagnóstico , Microcefalia/metabolismo , Atrofia Óptica/diagnóstico , Atrofia Óptica/metabolismo , Linaje , Fenotipo , Alineación de Secuencia , Testículo/patología , Proteínas de Unión al GTP rab1/metabolismo
4.
J Cell Sci ; 126(Pt 15): 3429-40, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23729733

RESUMEN

Mutations in the PPP6C catalytic subunit of protein phosphatase 6 (PP6) are drivers for the development of melanoma. Here, we analyse a panel of melanoma-associated mutations in PPP6C and find that these generally compromise assembly of the PP6 holoenzyme and catalytic activity towards a model substrate. Detailed analysis of one mutant, PPP6C-H114Y, in both primary melanoma and engineered cell lines reveals it is destabilized and undergoes increased proteasome-mediated turnover. Global analysis of phosphatase substrates by mass spectrometry identifies the oncogenic kinase Aurora-A as the major PP6 substrate that is dysregulated under these conditions. Accordingly, cells lacking PPP6C or carrying the PPP6C-H114Y allele have elevated Aurora-A kinase activity and display chromosome instability with associated Aurora-A-dependent micronucleation. Chromosomes mis-segregated to these micronuclei are preferentially stained by the DNA damage marker γ-H2AX, suggesting that loss of PPP6C promotes both chromosome instability and DNA damage. These findings support the view that formation of micronuclei rather than chromosome instability alone explains how loss of PPP6C, and more generally mitotic spindle and centrosome defects, can act as drivers for genome instability in melanoma and other cancers.


Asunto(s)
Aurora Quinasa A/metabolismo , Inestabilidad Cromosómica , Daño del ADN , Melanoma/genética , Fosfoproteínas Fosfatasas/genética , Secuencia de Aminoácidos , Aurora Quinasa A/genética , Línea Celular Tumoral , Células HeLa , Humanos , Melanoma/enzimología , Melanoma/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación
5.
Am J Hum Genet ; 88(4): 499-507, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21473985

RESUMEN

Warburg Micro syndrome and Martsolf syndrome are heterogenous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Previously, identification of mutations in RAB3GAP1 and RAB3GAP2 in both these syndromes implicated dysregulation of the RAB3 cycle (which controls calcium-mediated exocytosis of neurotransmitters and hormones) in disease pathogenesis. RAB3GAP1 and RAB3GAP2 encode the catalytic and noncatalytic subunits of the hetrodimeric enzyme RAB3GAP (RAB3GTPase-activating protein), a key regulator of the RAB3 cycle. We performed autozygosity mapping in five consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in RAB18. A c.71T > A (p.Leu24Gln) founder mutation was identified in four Pakistani families, and a homozygous exon 2 deletion (predicted to result in a frameshift) was found in the fifth family. A single family whose members were compound heterozygotes for an anti-termination mutation of the stop codon c.619T > C (p.X207QextX20) and an inframe arginine deletion c.277_279 del (p.Arg93 del) were identified after direct gene sequencing and multiplex ligation-dependent probe amplification (MLPA) of a further 58 families. Nucleotide binding assays for RAB18(Leu24Gln) and RAB18(Arg93del) showed that these mutant proteins were functionally null in that they were unable to bind guanine. The clinical features of Warburg Micro syndrome patients with RAB3GAP1 or RAB3GAP2 mutations and RAB18 mutations are indistinguishable, although the role of RAB18 in trafficking is still emerging, and it has not been linked previously to the RAB3 pathway. Knockdown of rab18 in zebrafish suggests that it might have a conserved developmental role. Our findings imply that RAB18 has a critical role in human brain and eye development and neurodegeneration.


Asunto(s)
Mutación , Proteínas de Unión al GTP rab/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Catarata/congénito , Catarata/genética , Catarata/metabolismo , Codón de Terminación , Consanguinidad , Córnea/anomalías , Córnea/metabolismo , Análisis Mutacional de ADN , Femenino , Efecto Fundador , Haplotipos , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Microcefalia/genética , Microcefalia/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Linaje , Fenotipo , Unión Proteica , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/genética
6.
Nat Cell Biol ; 9(4): 436-44, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17351640

RESUMEN

Spatial and temporal coordination of polo-like kinase 1 (Plk1) activity is necessary for mitosis and cytokinesis, and this is achieved through binding to phosphorylated docking proteins with distinct subcellular localizations. Although cyclin-dependent kinase 1 (Cdk1) creates these phosphorylated docking sites in metaphase, a general principle that explains how Plk1 activity is controlled in anaphase after Cdk1 inactivation is lacking. Here, we show that the microtubule-associated protein regulating cytokinesis (PRC1) is an anaphase-specific binding partner for Plk1, and that this interaction is required for cytokinesis. In anaphase, Plk1 creates its own docking site on PRC1, whereas in metaphase Cdk1 phosphorylates PRC1 adjacent to this docking site and thereby prevents binding of Plk1. Mutation of these Cdk1-sites results in a form of PRC1 that prematurely recruits Plk1 to the spindle during prometaphase and blocks mitotic progression. The activation state of Cdk1, therefore, controls the switch of Plk1 localization from centrosomes and kinetochores during metaphase, to the central spindle during anaphase.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinesis/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Centrosoma/metabolismo , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Cinetocoros/metabolismo , Microscopía Fluorescente , Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Homología de Secuencia de Aminoácido , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
7.
Proc Natl Acad Sci U S A ; 108(46): 18672-7, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22065758

RESUMEN

Rab GTPases are key regulators of membrane traffic pathways within eukaryotic cells. They are specifically activated by guanine nucleotide exchange factors (GEFs), which convert them from their "inactive" GDP-bound form to the "active" GTP-bound form. In higher eukaryotes, proteins containing DENN-domains comprise a major GEF family. Here we describe at 2.1-Å resolution the first structure of a DENN-domain protein, DENND1B-S, complexed with its substrate Rab35, providing novel insights as to how DENN-domain GEFs interact with and activate Rabs. DENND1B-S is bi-lobed, and interactions with Rab35 are through conserved surfaces in both lobes. Rab35 binds via switch regions I and II, around the nucleotide-binding pocket. Positional shifts in Rab residues required for nucleotide binding may lower its affinity for bound GDP, and a conformational change in switch I, which makes the nucleotide-binding pocket more solvent accessible, likely also facilitates exchange.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Factores de Intercambio de Guanina Nucleótido/química , Guanina/química , Proteínas de Unión al GTP rab/química , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X/métodos , Humanos , Cinética , Nucleótidos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rab1/química
8.
Structure ; 32(7): 866-877.e4, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38626766

RESUMEN

Trafficking receptors control protein localization through the recognition of specific signal sequences that specify unique cellular locations. Differences in luminal pH are important for the vectorial trafficking of cargo receptors. The KDEL receptor is responsible for maintaining the integrity of the ER by retrieving luminally localized folding chaperones in a pH-dependent mechanism. Structural studies have revealed the end states of KDEL receptor activation and the mechanism of selective cargo binding. However, precisely how the KDEL receptor responds to changes in luminal pH remains unclear. To explain the mechanism of pH sensing, we combine analysis of X-ray crystal structures of the KDEL receptor at neutral and acidic pH with advanced computational methods and cell-based assays. We show a critical role for ordered water molecules that allows us to infer a direct connection between protonation in different cellular compartments and the consequent changes in the affinity of the receptor for cargo.


Asunto(s)
Receptores de Péptidos , Concentración de Iones de Hidrógeno , Humanos , Receptores de Péptidos/metabolismo , Receptores de Péptidos/química , Receptores de Péptidos/genética , Cristalografía por Rayos X , Transporte de Proteínas , Unión Proteica , Modelos Moleculares , Retículo Endoplásmico/metabolismo , Sitios de Unión
9.
J Biol Chem ; 287(27): 22740-8, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22637480

RESUMEN

Rab GTPases regulate vesicle budding, motility, docking, and fusion. In cells, their cycling between active, GTP-bound states and inactive, GDP-bound states is regulated by the action of opposing enzymes called guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). The substrates for most RabGAPs are unknown, and the potential for cross-talk between different membrane trafficking pathways remains uncharted territory. Rab9A and its effectors regulate recycling of mannose 6-phosphate receptors from late endosomes to the trans Golgi network. We show here that RUTBC2 is a TBC domain-containing protein that binds to Rab9A specifically both in vitro and in cultured cells but is not a GAP for Rab9A. Biochemical screening of Rab protein substrates for RUTBC2 revealed highest GAP activity toward Rab34 and Rab36. In cells, membrane-associated RUTBC2 co-localizes with Rab36, and expression of wild type RUTBC2, but not the catalytically inactive, RUTBC2 R829A mutant, decreases the amount of membrane-associated Rab36 protein. These data show that RUTBC2 can act as a Rab36 GAP in cells and suggest that RUTBC2 links Rab9A function to Rab36 function in the endosomal system.


Asunto(s)
Endosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Neuroblastoma , Neuronas/citología , Neuronas/metabolismo , Técnicas del Sistema de Dos Híbridos , Células Vero
10.
J Cell Sci ; 124(Pt 14): 2323-34, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21709074

RESUMEN

Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.


Asunto(s)
Mitosis/fisiología , Fosfoproteínas Fosfatasas/fisiología , Animales , Humanos , Ratones , Mitosis/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Huso Acromático/genética , Huso Acromático/metabolismo
11.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897279

RESUMEN

Amplification of the mitotic kinase Aurora A or loss of its regulator protein phosphatase 6 (PP6) have emerged as drivers of genome instability. Cells lacking PPP6C, the catalytic subunit of PP6, have amplified Aurora A activity, and as we show here, enlarged mitotic spindles which fail to hold chromosomes tightly together in anaphase, causing defective nuclear structure. Using functional genomics to shed light on the processes underpinning these changes, we discover synthetic lethality between PPP6C and the kinetochore protein NDC80. We find that NDC80 is phosphorylated on multiple N-terminal sites during spindle formation by Aurora A-TPX2, exclusively at checkpoint-silenced, microtubule-attached kinetochores. NDC80 phosphorylation persists until spindle disassembly in telophase, is increased in PPP6C knockout cells, and is Aurora B-independent. An Aurora-phosphorylation-deficient NDC80-9A mutant reduces spindle size and suppresses defective nuclear structure in PPP6C knockout cells. In regulating NDC80 phosphorylation by Aurora A-TPX2, PP6 plays an important role in mitotic spindle formation and size control and thus the fidelity of cell division.


Asunto(s)
Aurora Quinasa A , Proteínas del Citoesqueleto , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares , Fosfoproteínas Fosfatasas , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Huso Acromático/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aurora Quinasa A/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
12.
J Biol Chem ; 286(38): 33213-22, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21808068

RESUMEN

Rab GTPases regulate all steps of membrane trafficking. Their interconversion between active, GTP-bound states and inactive, GDP-bound states is regulated by guanine nucleotide exchange factors and GTPase-activating proteins. The substrates for most Rab GTPase-activating proteins (GAPs) are unknown. Rab9A and its effectors regulate transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. We show here that RUTBC1 is a Tre2/Bub2/Cdc16 domain-containing protein that binds to Rab9A-GTP both in vitro and in cultured cells, but is not a GTPase-activating protein for Rab9A. Biochemical screening of RUTBC1 Rab protein substrates revealed highest in vitro GTP hydrolysis-activating activity with Rab32 and Rab33B. Catalysis required Arg-803 of RUTBC1, and RUTBC1 could activate a catalytically inhibited Rab33B mutant (Q92A), in support of a dual finger mechanism for RUTBC1 action. Rab9A binding did not influence GAP activity of bead-bound RUTBC1 protein. In cells and cell extracts, RUTBC1 influenced the ability of Rab32 to bind its effector protein, Varp, consistent with a physiological role for RUTBC1 in regulating Rab32. In contrast, binding of Rab33B to its effector protein, Atg16L1, was not influenced by RUTBC1 in cells or extracts. The identification of a protein that binds Rab9A and inactivates Rab32 supports a model in which Rab9A and Rab32 act in adjacent pathways at the boundary between late endosomes and the biogenesis of lysosome-related organelles.


Asunto(s)
Guanosina Trifosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Extractos Celulares , Línea Celular , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
13.
Dev Cell ; 12(3): 326-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336899
14.
J Virol ; 85(16): 8012-21, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21680502

RESUMEN

Assembly of herpes simplex virus 1 (HSV-1) occurs in the cytoplasm, where the capsid and tegument bud into host cell membranes. It is at this point that the viral glycoproteins are incorporated into the virion, as they are located at the assembly site. We investigated the role of the Rab GTPases in coordinating the assembly process by overexpressing 37 human Rab GTPase-activating proteins (GAPs) and assessing infectious titers. Rab GTPases are key cellular regulators of membrane trafficking events that, by their membrane association and binding of effector proteins, ensure the appropriate fusion of membranes. We identified that TBC1D20 and RN-tre and their partner Rabs, Rab1a/b and Rab43, respectively, are important for virion assembly. In the absence of Rab1a/b, the viral glycoproteins are unable to traffic from the endoplasmic reticulum to the assembly compartment, and thus unenveloped particles build up in the cytoplasm. The defect resulting from Rab43 depletion is somewhat more complex, but it appears that the fragmentation and dispersal of the trans-Golgi network and associated membranes render these compartments unable to support secondary envelopment.


Asunto(s)
Herpesvirus Humano 1/fisiología , Proteínas del Envoltorio Viral/metabolismo , Ensamble de Virus , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Técnica del Anticuerpo Fluorescente , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Microscopía Electrónica , Interferencia de ARN , ARN Interferente Pequeño , Células Vero , Replicación Viral , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab1/genética
15.
Nat Cell Biol ; 7(9): 887-93, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16086013

RESUMEN

Rab-family GTPases are conserved regulators of membrane trafficking that cycle between inactive GDP-bound and activated GTP-bound states. A key determinant of Rab function is the lifetime of the GTP-bound state. As Rabs have a low intrinsic rate of GTP hydrolysis, this process is under the control of GTP-hydrolysis-activating proteins (GAPs). Due to the large number of Rabs and GAPs that are encoded by the human genome, it has proven difficult to assign specific functional relationships to these proteins. Here, we identify a Rab5-specific GAP (RabGAP-5), and show that RN-Tre (previously described as a Rab5 GAP) acts on Rab41. RabGAP-5 overexpression triggers a loss of the Rab5 effector EEA1 from endosomes and blocks endocytic trafficking. By contrast, depletion of RabGAP-5 results in increased endosome size, more endosome-associated EEA1, and disrupts the trafficking of EGF and LAMP1. RabGAP-5 therefore limits the amount of activated Rab5, and thereby regulates trafficking through endosomes.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Regulación hacia Abajo/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/aislamiento & purificación , Células HeLa , Humanos , Proteínas de Membrana de los Lisosomas , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular , Proteínas de Unión al GTP rab/metabolismo
16.
J Cell Biol ; 176(3): 255-61, 2007 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-17261844

RESUMEN

The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with a previously uncharacterized coiled-coil protein, Ydl099w (Bug1). In addition, Grh1 interacts with the Sec23/24 component of the COPII coat. Neither Grh1 nor Bug1 are essential for growth, but biochemical assays and genetic interactions with known mediators of vesicle tethering (Uso1 and Ypt1) suggest that the Grh1-Bug1 complex contributes to a redundant network of interactions that mediates consumption of COPII vesicles and formation of the cis-Golgi.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Vesículas Cubiertas/metabolismo , Eliminación de Gen , Proteínas de la Matriz de Golgi , Proteínas de la Membrana , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo
17.
J Cell Biol ; 178(3): 363-9, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17646400

RESUMEN

Primary cilia are sensory structures involved in morphogen signalling during development, liquid flow in the kidney, mechanosensation, sight, and smell (Badano, J.L., N. Mitsuma, P.L. Beales, and N. Katsanis. 2006. Annu. Rev. Genomics Hum. Genet. 7:125-148; Singla, V., and J.F. Reiter. 2006. Science. 313:629-633.). Mutations that affect primary cilia are responsible for several diseases, including neural tube defects, polycystic kidney disease, retinal degeneration, and cancers (Badano et al., 2006; Singla and Reiter, 2006). Primary cilia formation and function requires tight integration of the microtubule cytoskeleton with membrane trafficking (Singla and Reiter, 2006), and this is poorly understood. We show that the Rab GTPase membrane trafficking regulators Rab8a, -17, and -23, and their cognate GTPase-activating proteins (GAPs), XM_037557, TBC1D7, and EVI5like, are involved in primary cilia formation. However, other human Rabs and GAPs are not. Additionally, Rab8a specifically interacts with cenexin/ODF2, a basal body and microtubule binding protein required for cilium biogenesis (Ishikawa, H., A. Kubo, S. Tsukita, and S. Tsukita. 2005. Nat. Cell Biol. 7:517-524), and is the sole Rab enriched at primary cilia. These findings provide a basis for understanding how specific membrane trafficking pathways cooperate with the microtubule cytoskeleton to give rise to the primary cilia.


Asunto(s)
Cilios/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Epitelio Pigmentado Ocular/citología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión al GTP rab/genética
18.
J Cell Biol ; 177(6): 1133-43, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17562788

RESUMEN

Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A-C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Toxina Shiga/metabolismo , Proteínas de Unión al GTP rab/fisiología , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Transporte de Proteínas
19.
Semin Cell Dev Biol ; 20(7): 780-3, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19508857

RESUMEN

The Rab, ARF, and Arl members of the Ras superfamily of small GTPases work together to control specific intracellular trafficking pathways. Here we focus on their roles in protein transport to and within the Golgi apparatus.


Asunto(s)
Aparato de Golgi/enzimología , Proteínas de Unión al GTP rab/metabolismo , Animales , Vesículas Citoplasmáticas/metabolismo , Glicoproteínas/metabolismo , Humanos , Transporte de Proteínas
20.
Curr Opin Cell Biol ; 14(4): 496-9, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12383802

RESUMEN

Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism


Asunto(s)
Retículo Endoplásmico/genética , Aparato de Golgi/genética , Actinas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Humanos , Microtúbulos/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Huso Acromático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA