Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 17(7): 1161-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21762567

RESUMEN

After onset of a cholera epidemic in Haiti in mid-October 2010, a team of researchers from France and Haiti implemented field investigations and built a database of daily cases to facilitate identification of communes most affected. Several models were used to identify spatiotemporal clusters, assess relative risk associated with the epidemic's spread, and investigate causes of its rapid expansion in Artibonite Department. Spatiotemporal analyses highlighted 5 significant clusters (p<0.001): 1 near Mirebalais (October 16-19) next to a United Nations camp with deficient sanitation, 1 along the Artibonite River (October 20-28), and 3 caused by the centrifugal epidemic spread during November. The regression model indicated that cholera more severely affected communes in the coastal plain (risk ratio 4.91) along the Artibonite River downstream of Mirebalais (risk ratio 4.60). Our findings strongly suggest that contamination of the Artibonite and 1 of its tributaries downstream from a military camp triggered the epidemic.


Asunto(s)
Cólera , Epidemias/estadística & datos numéricos , Cólera/diagnóstico , Cólera/epidemiología , Cólera/mortalidad , Cólera/patología , Cólera/transmisión , Análisis por Conglomerados , Haití/epidemiología , Humanos , Oportunidad Relativa , Vigilancia de la Población , Factores de Riesgo , Ríos/microbiología , Saneamiento , Tasa de Supervivencia , Vibrio cholerae/crecimiento & desarrollo
2.
Viruses ; 13(3)2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803868

RESUMEN

Haïti is at risk for wild poliovirus (WPV) importation and circulation, as well as vaccine-derived poliovirus (VDPV) emergence. Environmental surveillance (ES) for polioviruses was established in Port au Prince and Gonaïves in 2016. During 2017-2019, initial ES sites were re-evaluated, and ES was expanded into Cap Haïtien and Saint Marc. Wastewater samples and data on weather, hour of collection, and sample temperature and pH were collected every 4 weeks during March 2017-December 2019 (272 sampling events) from 21 sites in Cap Haïtien, Gonaïves, Port au Prince, and Saint Marc. Samples were processed for the detection of polio and non-polio enteroviruses using the two-phase and "Concentration and Filter Elution" methodologies. Polioviruses were serotyped and underwent intra-typic characterization. No WPV or VDPVs were isolated. Sabin-like polioviruses (oral vaccine strain) of serotypes 1 and 3 were sporadically detected. Five of six (83%), one of six (17%), five of six (83%), and two of three (67%) sites evaluated in Cap Haïtien, Gonaïves, Port au Prince, and Saint Marc, respectively, had enterovirus isolation from >50% of sampling events; these results and considerations, such as watershed population size and overlap, influence of sea water, and excessive particulates in samples, were factors in site retention or termination. The evaluation of 21 ES sampling sites in four Haïtian cities led to the termination of 11 sites. Every-four-weekly sampling continues at the remaining 10 sites across the four cities as a core Global Polio Eradication Initiative activity.


Asunto(s)
Monitoreo del Ambiente/métodos , Poliomielitis/epidemiología , Poliovirus/aislamiento & purificación , Erradicación de la Enfermedad/métodos , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Monitoreo del Ambiente/estadística & datos numéricos , Haití , Humanos , Poliomielitis/virología , Poliovirus/clasificación , Poliovirus/genética , Vacuna Antipolio Oral/análisis , Muestreo , Aguas del Alcantarillado/virología , Aguas Residuales/virología
4.
PLoS Negl Trop Dis ; 14(1): e0007967, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004316

RESUMEN

Oral cholera vaccine (OCV) has increasingly been used as an outbreak control measure, but vaccine shortages limit its application. A two-dose OCV campaign targeting residents aged over 1 year was launched in three rural Communes of Southern Haiti during an outbreak following Hurricane Matthew in October 2016. Door-to-door and fixed-site strategies were employed and mobile teams delivered vaccines to hard-to-reach communities. This was the first campaign to use the recently pre-qualified OCV, Euvichol. The study objective was to estimate post-campaign vaccination coverage in order to evaluate the campaign and guide future outbreak control strategies. We conducted a cluster survey with sampling based on random GPS points. We identified clusters of five households and included all members eligible for vaccination. Local residents collected data through face-to-face interviews. Coverage was estimated, accounting for the clustered sampling, and 95% confidence intervals calculated. 435 clusters, 2,100 households and 9,086 people were included (99% response rate). Across the three communes respectively, coverage by recall was: 80.7% (95% CI:76.8-84.1), 82.6% (78.1-86.4), and 82.3% (79.0-85.2) for two doses and 94.2% (90.8-96.4), 91.8% (87-94.9), and 93.8% (90.8-95.9) for at least one dose. Coverage varied by less than 9% across age groups and was similar among males and females. Participants obtained vaccines from door-to-door vaccinators (53%) and fixed sites (47%). Most participants heard about the campaign through community 'criers' (58%). Despite hard-to-reach communities, high coverage was achieved in all areas through combining different vaccine delivery strategies and extensive community mobilisation. Emergency OCV campaigns are a viable option for outbreak control and where possible multiple strategies should be used in combination. Euvichol will help alleviate the OCV shortage but effectiveness studies in outbreaks should be done.


Asunto(s)
Vacunas contra el Cólera/administración & dosificación , Cólera/prevención & control , Vacunación Masiva/métodos , Cobertura de Vacunación , Adolescente , Adulto , Niño , Preescolar , Cólera/epidemiología , Vacunas contra el Cólera/provisión & distribución , Análisis por Conglomerados , Recolección de Datos , Brotes de Enfermedades , Composición Familiar , Femenino , Haití/epidemiología , Humanos , Lactante , Masculino , Población Rural
5.
PLoS Negl Trop Dis ; 13(4): e0007263, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30990822

RESUMEN

BACKGROUND: In October 2010, Haiti was struck by a large-scale cholera epidemic. The Haitian government, UNICEF and other international partners launched an unprecedented nationwide alert-response strategy in July 2013. Coordinated NGOs recruited local rapid response mobile teams to conduct case-area targeted interventions (CATIs), including education sessions, household decontamination by chlorine spraying, and distribution of chlorine tablets. An innovative red-orange-green alert system was also established to monitor the epidemic at the communal scale on a weekly basis. Our study aimed to describe and evaluate the exhaustiveness, intensity and quality of the CATIs in response to cholera alerts in Haiti between July 2013 and June 2017. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the response to 7,856 weekly cholera alerts using routine surveillance data and severity criteria, which was based on the details of 31,306 notified CATIs. The odds of CATI response during the same week (exhaustiveness) and the number of complete CATIs in responded alerts (intensity and quality) were estimated using multivariate generalized linear mixed models and several covariates. CATIs were carried out significantly more often in response to red alerts (adjusted odds ratio (aOR) [95%-confidence interval, 95%-CI], 2.52 [2.22-2.87]) compared with orange alerts. Significantly more complete CATIs were carried out in response to red alerts compared with orange alerts (adjusted incidence ratio (aIR), 1.85 [1.73-1.99]). Over the course of the eight-semester study, we observed a significant improvement in the exhaustiveness (aOR, 1.43 [1.38-1.48] per semester) as well as the intensity and quality (aIR, 1.23 [1.2-1.25] per semester) of CATI responses, independently of funds available for the strategy. The odds of launching a CATI response significantly decreased with increased rainfall (aOR, 0.99 [0.97-1] per each accumulated cm). Response interventions were significantly heterogeneous between NGOs, communes and departments. CONCLUSIONS/SIGNIFICANCE: The implementation of a nationwide case-area targeted rapid response strategy to control cholera in Haiti was feasible albeit with certain obstacles. Such feedback from the field and ongoing impact studies will be very informative for actors and international donors involved in cholera control and elimination in Haiti and in other affected countries.


Asunto(s)
Cólera/epidemiología , Cólera/prevención & control , Brotes de Enfermedades , Transmisión de Enfermedad Infecciosa/prevención & control , Investigación sobre Servicios de Salud , Control de Infecciones/métodos , Control de Infecciones/organización & administración , Haití/epidemiología , Humanos
6.
Am J Trop Med Hyg ; 97(4_Suppl): 12-20, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29064361

RESUMEN

Haiti's health system has faced many challenges over the years, with competing health priorities in the context of chronic financial and human resource limitations. As a result, the existing notifiable disease surveillance system was unable to provide the most basic epidemiologic data for public health decision-making and action. In the wake of the January 2010 earthquake, the Haitian Ministry of Public Health and Population collaborated with the U.S. Centers for Disease Control and Prevention, the Pan American Health Organization, and other local and international partners to implement a functional national surveillance system. More than 7 years later, it is important to take the opportunity to reflect on progress made on surveillance and response in Haiti, including disease detection, reporting, outbreak investigation, and response. The national epidemiologic surveillance network that started with 51 sites in 2010 has been expanded to 357 sites as of December 2015. Disease outbreaks identified via the surveillance system, or other surveillance approaches, are investigated by epidemiologists trained by the Ministry of Health's Field Epidemiology Training Program. Other related surveillance modules have been developed on the same model and electronic platform, allowing the country to document the impact of interventions, track progress, and monitor health problems. Sustainability remains the greatest challenge since most of the funding for surveillance come from external sources.


Asunto(s)
Desastres , Notificación de Enfermedades/métodos , Brotes de Enfermedades , Terremotos , Monitoreo Epidemiológico , Cooperación Internacional , Salud Pública , Centers for Disease Control and Prevention, U.S. , Haití/epidemiología , Prioridades en Salud , Humanos , Estados Unidos
7.
PLoS Negl Trop Dis ; 7(4): e2145, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593516

RESUMEN

BACKGROUND: In October 2010, cholera importation in Haiti triggered an epidemic that rapidly proved to be the world's largest epidemic of the seventh cholera pandemic. To establish effective control and elimination policies, strategies rely on the analysis of cholera dynamics. In this report, we describe the spatio-temporal dynamics of cholera and the associated environmental factors. METHODOLOGY/PRINCIPAL FINDINGS: Cholera-associated morbidity and mortality data were prospectively collected at the commune level according to the World Health Organization standard definition. Attack and mortality rates were estimated and mapped to assess epidemic clusters and trends. The relationships between environmental factors were assessed at the commune level using multivariate analysis. The global attack and mortality rates were 488.9 cases/10,000 inhabitants and 6.24 deaths/10,000 inhabitants, respectively. Attack rates displayed a significantly high level of spatial heterogeneity (varying from 64.7 to 3070.9 per 10,000 inhabitants), thereby suggesting disparate outbreak processes. The epidemic course exhibited two principal outbreaks. The first outbreak (October 16, 2010-January 30, 2011) displayed a centrifugal spread of a damping wave that suddenly emerged from Mirebalais. The second outbreak began at the end of May 2011, concomitant with the onset of the rainy season, and displayed a highly fragmented epidemic pattern. Environmental factors (river and rice fields: p<0.003) played a role in disease dynamics exclusively during the early phases of the epidemic. CONCLUSION: Our findings demonstrate that the epidemic is still evolving, with a changing transmission pattern as time passes. Such an evolution could have hardly been anticipated, especially in a country struck by cholera for the first time. These results argue for the need for control measures involving intense efforts in rapid and exhaustive case tracking.


Asunto(s)
Cólera/epidemiología , Cólera/mortalidad , Femenino , Haití/epidemiología , Humanos , Masculino
8.
PLoS Curr ; 52013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24077904

RESUMEN

BACKGROUND: On October 21, 2010, Haiti was struck by a cholera epidemic for the first time in over a century. Epidemiological and molecular genetic data have clearly demonstrated that the bacterium was imported. Nevertheless, the persistence of the epidemic for more than two years, the high incidence rates in some coastal areas and the seasonal exacerbations of the epidemic during the rainy seasons have prompted us to examine the levels of toxigenic Vibrio cholerae in the Haitian aquatic environment. METHODS: In July 2012, during the warm and rainy season, 36 aquatic stations were sampled to search for toxigenic V. cholerae. These stations included fresh, brackish and saline surface waters as well as waste water; the sampling sites were located in both rural and urban areas (around Port-au-Prince and Gonaïves) located in the West and Artibonite Departments. V. cholerae bacteria were detected in enrichment cultures of water samples (sample volumes included 1 L, 100 mL, 10 mL, 1 mL, 0.1 mL, 0.01 mL and 0.001 mL depending on the context). Detection methods included both culture on selective agar (for strain isolation) and PCR assays targeting the genes ompW (V. cholerae species), O1-rfb and O139-rfb (O1 and O139 V. cholerae serogroups, respectively), and the cholera toxin gene ctxA, which is present exclusively in toxigenic cholera strains. RESULTS: A total of 411 culturable V. cholerae isolates from 29 stations were obtained via selective culture; however, only one of these isolates displayed a late positive reaction with polyvalent anti-O1 serum. Positive V. cholerae PCR results were obtained from each of the 32 tested stations (a total of 77 enrichments out of 107 yielded a positive result); only one sample yielded a positive V. cholerae O1 PCR result. The cholera toxin gene ctxA was never detected via PCR with either primer pair, which includes samples derived from the two stations yielding positive O1 culture or positive O1 PCR results. Therefore, we could not demonstrate the presence of toxigenic V. cholerae O1 among the 36 stations sampled. This suggests that all water samples analyzed contained less than 10 toxigenic V. cholerae O1 bacteria per liter, a level 1000-fold below the dose that has been shown to provoke cholera in healthy adults. CONCLUSIONS: Currently, there is no evidence of a significant level of contamination of the aquatic environment in Haiti by the imported toxigenic V. cholerae O1 strain. The reemergence of cholera outbreaks in Haiti during rainy seasons is therefore more likely due to persisting outbreaks insufficiently tackled during the dry periods rather than the commonly suspected aquatic reservoir of toxigenic bacteria.

9.
PLoS Curr ; 52013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23873011

RESUMEN

BACKGROUND: Since the beginning of the cholera epidemic in Haiti, attack rates have varied drastically with alternating peak and lull phases, which were partly associated with the fluctuating dry, rainy and cyclonic seasons. According to a study conducted in 2012, the toxigenic V. cholerae O1 strain responsible for the outbreak did not settle at a significant level in the Haitian aquatic environment. Therefore, we hypothesize that some areas of lingering cholera transmission during the dry season could play an important role in the re-emergence of outbreaks during the rainy season. Our objective was therefore to describe the dynamics of cholera and assess the fight against the disease during the dry season. METHODS: A field study was conducted from February 19 to March 29, 2013. After identifying the affected communes by analyzing the national cholera database, we visited corresponding health facilities to identify patient origins. We then conducted a field assessment of these foci to confirm the presence of cholera, assess factors associated with transmission and examine the activities implemented to control the epidemic since the beginning of the current dry season. RESULTS: We found that the great majority of Haitian communes (109/140) presented no sign of cholera transmission in February and March 2013. Suspected cases were concentrated in a small number of urban and rural areas, almost all of which were located in the northern half of the country and often in inland locales. In these areas, community health activities appeared insufficient and were often inappropriately targeted. Out of 49 analyzed foci, only 10 had benefited from at least one intervention involving the distribution of water treatment products together with an awareness campaign since December 2012. CONCLUSION: Cholera continues to affect Haiti as observed in early 2013; however, activities implemented to interrupt cholera transmission appear insufficient and poorly suited. This deficiency in the fight against cholera, especially at a period when transmission is weak, may explain the persistence of cholera even in the absence of significant aquatic reservoirs in Haiti.

10.
Am J Trop Med Hyg ; 89(4): 688-697, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24106196

RESUMEN

The start of the cholera epidemic in Haiti quickly highlighted the necessity of the implementation of an Alert and Response (A&R) System to complement the existing national surveillance system. The national system had been able to detect and confirm the outbreak etiology but required external support to monitor the spread of cholera and coordinate response, because much of the information produced was insufficiently timely for real-time monitoring and directing of a rapid, targeted response. The A&R System was designed by the Pan American Health Organization/World Health Organization in collaboration with the Haiti Ministry of Health, and it was based on a network of partners, including any institution, structure, or individual that could identify, verify, and respond to alerts. The defined objectives were to (1) save lives through early detection and treatment of cases and (2) control the spread through early intervention at the community level. The operational structure could be broken down into three principle categories: (1) alert (early warning), (2) verification and assessment of the information, and (3) efficient and timely response in coordination with partners to avoid duplication. Information generated by the A&R System was analyzed and interpreted, and the qualitative information was critical in qualifying the epidemic and defining vulnerable areas, particularly because the national surveillance system reported incomplete data for more than one department. The A&R System detected a number of alerts unrelated to cholera and facilitated rapid access to that information. The sensitivity of the system and its ability to react quickly was shown in May of 2011, when an abnormal increase in alerts coming from several communes in the Sud-Est Department in epidemiological weeks (EWs) 17 and 18 were noted and disseminated network-wide and response activities were implemented. The national cholera surveillance system did not register the increase until EWs 21 and 22, and the information did not become available until EWs 23 and 24, when the peak of cases had already been reached. Although many of the partners reporting alerts during the peak of the cholera epidemic have since left Haiti, the A&R System has continued to function as an Early Warning (EWARN) System, and it continues to be developed with recent activities, such as the distribution of cell phones to enhance alert communication.


Asunto(s)
Cólera/epidemiología , Cólera/prevención & control , Epidemias/prevención & control , Administración en Salud Pública/métodos , Haití/epidemiología , Humanos , Vigilancia de la Población , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA