RESUMEN
Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.
Asunto(s)
Citrus sinensis , Microbioma Gastrointestinal , Animales , Citrus sinensis/metabolismo , Fibras de la Dieta , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Humanos , Ratones , Pectinas/metabolismo , Polisacáridos/metabolismo , Serotonina/análogos & derivadosRESUMEN
Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion.
Asunto(s)
Desarrollo Infantil , Desnutrición/dietoterapia , Leche Humana/química , Leche/química , Oligosacáridos/metabolismo , Animales , Bacteroides fragilis/genética , Bifidobacterium/clasificación , Bifidobacterium/genética , Química Encefálica , Modelos Animales de Enfermedad , Escherichia coli/genética , Heces/microbiología , Vida Libre de Gérmenes , Humanos , Lactante , Malaui , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , MicrobiotaRESUMEN
Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12-18-month-old Bangladeshi children with moderate acute malnutrition4. We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations.
Asunto(s)
Alimentos , Microbioma Gastrointestinal , Desnutrición , Polisacáridos , Humanos , Lactante , Bacterias/genética , Bangladesh , Peso Corporal/genética , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Genoma Bacteriano/genética , Desnutrición/microbiología , Metagenoma/genética , Polisacáridos/metabolismo , Aumento de PesoRESUMEN
Changing food preferences brought about by westernization that have deleterious health effects1,2-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods3. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity4-6. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community7-9. However, the microbiome is complex, dynamic and exhibits considerable intra- and interpersonal variation in its composition and functions. The large number of potential interactions between the components of the microbiome makes it challenging to define the mechanisms by which food ingredients affect community properties. Here we address the question of how foods containing different fibre preparations can be designed to alter functions associated with specific components of the microbiome. Because a marked increase in snack consumption is associated with westernization, we formulated snack prototypes using plant fibres from different sustainable sources that targeted distinct features of the gut microbiomes of individuals with obesity when transplanted into gnotobiotic mice. We used these snacks to supplement controlled diets that were consumed by adult individuals with obesity or who were overweight. Fibre-specific changes in their microbiomes were linked to changes in their plasma proteomes indicative of an altered physiological state.
Asunto(s)
Fibras de la Dieta/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Bocadillos , Adolescente , Adulto , Animales , Bacteroides/efectos de los fármacos , Bacteroides/aislamiento & purificación , Proteínas Sanguíneas/análisis , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad/microbiología , Sobrepeso/microbiología , Proteoma/análisis , Proteoma/efectos de los fármacos , Adulto JovenRESUMEN
Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type ß/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Polisacáridos/metabolismo , ProteomaRESUMEN
BACKGROUND: More than 30 million children worldwide have moderate acute malnutrition. Current treatments have limited effectiveness, and much remains unknown about the pathogenesis of this condition. Children with moderate acute malnutrition have perturbed development of their gut microbiota. METHODS: In this study, we provided a microbiota-directed complementary food prototype (MDCF-2) or a ready-to-use supplementary food (RUSF) to 123 slum-dwelling Bangladeshi children with moderate acute malnutrition between the ages of 12 months and 18 months. The supplementation was given twice daily for 3 months, followed by 1 month of monitoring. We obtained weight-for-length, weight-for-age, and length-for-age z scores and mid-upper-arm circumference values at baseline and every 2 weeks during the intervention period and at 4 months. We compared the rate of change of these related phenotypes between baseline and 3 months and between baseline and 4 months. We also measured levels of 4977 proteins in plasma and 209 bacterial taxa in fecal samples. RESULTS: A total of 118 children (59 in each study group) completed the intervention. The rates of change in the weight-for-length and weight-for-age z scores are consistent with a benefit of MDCF-2 on growth over the course of the study, including the 1-month follow-up. Receipt of MDCF-2 was linked to the magnitude of change in levels of 70 plasma proteins and of 21 associated bacterial taxa that were positively correlated with the weight-for-length z score (P<0.001 for comparisons of both protein and bacterial taxa). These proteins included mediators of bone growth and neurodevelopment. CONCLUSIONS: These findings provide support for MDCF-2 as a dietary supplement for young children with moderate acute malnutrition and provide insight into mechanisms by which this targeted manipulation of microbiota components may be linked to growth. (Supported by the Bill and Melinda Gates Foundation and the National Institutes of Health; ClinicalTrials.gov number, NCT04015999.).
Asunto(s)
Suplementos Dietéticos , Alimentos Formulados , Microbioma Gastrointestinal , Fenómenos Fisiológicos Nutricionales del Lactante , Desnutrición/dietoterapia , Antropometría , Bangladesh , Proteínas Sanguíneas/análisis , Peso Corporal , Heces/microbiología , Femenino , Crecimiento , Humanos , Lactante , Masculino , Desnutrición/microbiología , Proteoma , Aumento de PesoRESUMEN
The concept that gut microbiome-expressed functions regulate ponderal growth has important implications for infant and child health, as well as animal health. Using an intergenerational pig model of diet restriction (DR) that produces reduced weight gain, we developed a feature-selection algorithm to identify representative characteristics distinguishing DR fecal microbiomes from those of full-fed (FF) pigs as both groups consumed a common sequence of diets during their growth cycle. Gnotobiotic mice were then colonized with DR and FF microbiomes and subjected to controlled feeding with a pig diet. DR microbiomes have reduced representation of genes that degrade dominant components of late growth-phase diets, exhibit reduced production of butyrate, a key host-accessible energy source, and are causally linked to reduced hepatic fatty acid metabolism (ß-oxidation) and the selection of alternative energy substrates. The approach described could aid in the development of guidelines for microbiome stewardship in diverse species, including farm animals, in order to support their healthy growth.
Asunto(s)
Butiratos/metabolismo , Microbioma Gastrointestinal/fisiología , Metabolismo de los Lípidos/fisiología , Desnutrición/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , alfa-Glucosidasas/metabolismo , Algoritmos , Animales , Peso Corporal , Dieta/métodos , Dietoterapia/métodos , Modelos Animales de Enfermedad , Heces/microbiología , Vida Libre de Gérmenes , Hígado/metabolismo , Masculino , Desnutrición/fisiopatología , Ratones , Ratones Endogámicos C57BL , Almidón/metabolismo , Sacarosa/metabolismo , Porcinos , Ácido Taurocólico/metabolismoRESUMEN
BACKGROUND: Environmental enteric dysfunction (EED) is an enigmatic disorder of the small intestine that is postulated to play a role in childhood undernutrition, a pressing global health problem. Defining the incidence of this disorder, its pathophysiological features, and its contribution to impaired linear and ponderal growth has been hampered by the difficulty in directly sampling the small intestinal mucosa and microbial community (microbiota). METHODS: In this study, among 110 young children (mean age, 18 months) with linear growth stunting who were living in an urban slum in Dhaka, Bangladesh, and had not benefited from a nutritional intervention, we performed endoscopy in 80 children who had biopsy-confirmed EED and available plasma and duodenal samples. We quantified the levels of 4077 plasma proteins and 2619 proteins in duodenal biopsy samples obtained from these children. The levels of bacterial strains in microbiota recovered from duodenal aspirate from each child were determined with the use of culture-independent methods. In addition, we obtained 21 plasma samples and 27 fecal samples from age-matched healthy children living in the same area. Young germ-free mice that had been fed a Bangladeshi diet were colonized with bacterial strains cultured from the duodenal aspirates. RESULTS: Of the bacterial strains that were obtained from the children, the absolute levels of a shared group of 14 taxa (which are not typically classified as enteropathogens) were negatively correlated with linear growth (length-for-age z score, r = -0.49; P = 0.003) and positively correlated with duodenal proteins involved in immunoinflammatory responses. The representation of these 14 duodenal taxa in fecal microbiota was significantly different from that in samples obtained from healthy children (P<0.001 by permutational multivariate analysis of variance). Enteropathy of the small intestine developed in gnotobiotic mice that had been colonized with cultured duodenal strains obtained from children with EED. CONCLUSIONS: These results provide support for a causal relationship between growth stunting and components of the small intestinal microbiota and enteropathy and offer a rationale for developing therapies that target these microbial contributions to EED. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT02812615.).
Asunto(s)
Duodeno/microbiología , Microbioma Gastrointestinal , Trastornos del Crecimiento/microbiología , Trastornos de la Nutrición del Lactante/complicaciones , Animales , Bacterias/aislamiento & purificación , Bangladesh , Duodenoscopía , Duodeno/patología , Enfermedades Ambientales/complicaciones , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Crecimiento , Trastornos del Crecimiento/etiología , Humanos , Lactante , Enfermedades Inflamatorias del Intestino/complicaciones , Factor I del Crecimiento Similar a la Insulina/análisis , Enfermedades Intestinales/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Proteínas Asociadas a Pancreatitis/análisis , Proteoma/análisisRESUMEN
BACKGROUND: Human milk oligosaccharides (HMOs) are an abundant class of compounds found in human milk and have been linked to the development of the infant, and specifically the brain, immune system, and gut microbiome. OBJECTIVES: Advanced analytical methods were used to obtain relative quantitation of many structures in approximately 2000 samples from over 1000 mothers in urban, semirural, and rural sites across geographically diverse countries. METHODS: LC-MS-based analytical methods were used to profile the compounds with broad structural coverage and quantitative information. The profiles revealed their structural heterogeneity and their potential biological roles. Comparisons of HMO compositions were made between mothers of different age groups, lactation periods, infant sexes, and residing geographical locations. RESULTS: A common behavior found among all sites was a decrease in HMO abundances during lactation until approximately postnatal month 6, where they remained relatively constant. The greatest variations in structural abundances were associated with the presence of α(1,2)-fucosylated species. Genomic analyses of the mothers were not performed; instead, milk was phenotyped according to the abundances of α(1,2)-fucosylated structures. Mothers from the South American sites tended to have higher proportions of phenotypic secretors [mothers with relatively high concentrations of α(1,2)-fucosylated structures] in their populations compared to the rest of the globe, with Bolivia at â¼100% secretors, Peru at â¼97%, Brazil at â¼90%, and Argentina at â¼85%. Conversely, the cohort sampled in Africa manifested the lowest proportion of secretors (South Africa â¼ 63%, the Gambia â¼ 64%, and Malawi â¼ 75%). Furthermore, we compared total abundances of HMOs in secretors compared with nonsecretors and found that nonsecretors have lower abundances of HMOs compared to secretors, regardless of geographical location. We also observed compositional differences of the 50+ most abundant HMOs between milk types and geographical locations. CONCLUSIONS: This study represents the largest structural HMO study to date and reveals the general behavior of HMOs during lactation among different populations.
Asunto(s)
Leche Humana , Oligosacáridos , Lactancia Materna , Femenino , Humanos , Lactante , Lactancia , Malaui , Leche Humana/química , Oligosacáridos/químicaRESUMEN
BACKGROUND: Childhood undernutrition is a major public health concern that needs special attention to achieve 2025 global nutrition targets. Moderate acute malnutrition (MAM), manifest as wasting (low weight-for-height), affects 33 million children under 5, yet there are currently no global guidelines for its treatment. We recently performed a randomized-controlled clinical study of a microbiota-directed complementary food formulation (MDCF-2) in 12-18-month-old Bangladeshi children with MAM. The results revealed that MDCF-2, freshly prepared each day, produced a significantly greater improvement in ponderal growth than a standard ready-to-use supplementary food (RUSF), an effect that is associated with repair of the disrupted gut microbial community development that occurs in children with MAM. To test the generalizability of these results in acutely malnourished children at other sites, there is a pressing need for a packaged, shelf-stable, organoleptically-acceptable formulation that is bioequivalent to MDCF-2. This report describes the protocol for a clinical study to evaluate candidate formulations designed to meet these criteria. METHODS: A randomized single-blind study will be conducted in 8-12-month-old Bangladeshi children with MAM to compare the efficacy of alternative shelf-stable MDCF prototypes versus the current MDCF-2 formulation that is produced fresh each day. V4-16S rDNA amplicon and shotgun sequencing datasets will be generated from faecal DNA samples collected from each child enrolled in each group prior to, during, and after treatment to determine the abundances of MDCF-2-responsive bacterial taxa. Efficacy will be assessed by quantifying the change in representation of MDCF-2-responsive gut bacterial taxa after 4-weeks of treatment with freshly prepared MDCF-2 compared to their changes in abundance after treatment with the prototype MDCFs. Equivalence will be defined as the absence of a statistically significant difference, after 4-weeks of treatment, in the representation of faecal bacterial taxa associated with the response to MDCF-2 in participants receiving a test MDCF. DISCUSSION: This trial aims to establish acceptability and equivalence with respect to microbiota repair, of scalable, shelf-stable formulations of MDCF-2 in 8-12-month-old Bangladeshi children with moderate acute malnutrition. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05094024). The trial has been registered before starting enrolment on 23 October 2021.
Asunto(s)
Trastornos de la Nutrición del Niño , Desnutrición , Microbiota , Niño , Trastornos de la Nutrición del Niño/terapia , Alimentos Fortificados , Humanos , Lactante , Ensayos Clínicos Controlados Aleatorios como Asunto , Método Simple CiegoRESUMEN
Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2'-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting.
Asunto(s)
Huesos/efectos de los fármacos , Vida Libre de Gérmenes/efectos de los fármacos , Desnutrición/tratamiento farmacológico , Leche Humana/metabolismo , Oligosacáridos/administración & dosificación , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Animales , Bacterias/efectos de los fármacos , Bovinos , Dieta , Modelos Animales de Enfermedad , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Intestino Delgado/microbiología , Masculino , Desnutrición/microbiología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Campylobacter infection is associated with impaired growth of children, even in the absence of symptoms. To examine the underlying mechanisms, we evaluated associations between Campylobacter infection, linear growth, and fecal microbial community features in a prospective birth cohort of 271 children with a high burden of diarrhea and stunting in the Amazonian lowlands of Peru. METHODS: Campylobacter was identified using a broadly reactive, genus-specific enzyme-linked immunosorbent assay. 16S rRNA-based analyses were used to identify bacterial taxa in fecal samples at ages 6, 12, 18, and 24 months (N = 928). Associations between infection, growth, and gut microbial community composition were investigated using multiple linear regression adjusting for within-child correlations, age, and breastfeeding. Indicator species analyses identified taxa specifically associated with Campylobacter burden. RESULTS: Ninety-three percent (251) of children had Campylobacter present in asymptomatic fecal samples during the follow-up period. A 10% increase in the proportion of stools infected was associated with mean reductions of 0.02 length-for-age z scores (LAZ) at 3, 6, and 9 months thereafter (P < .01). We identified 13 bacterial taxa indicative of cumulative Campylobacter burden and 14 taxa significantly associated with high or low burden of enteroaggregative Escherichia coli, norovirus, or Giardia. CONCLUSIONS: Campylobacter infection is common in this cohort and associated with changes in microbial community composition. These results support the notion that disruptions to the fecal microbiota may help explain the observed effects of asymptomatic infections on growth in early life.
Asunto(s)
Infecciones por Campylobacter , Campylobacter , Microbioma Gastrointestinal , Adolescente , Adulto , Infecciones por Campylobacter/epidemiología , Niño , Heces , Femenino , Humanos , Lactante , Perú/epidemiología , Estudios Prospectivos , ARN Ribosómico 16S/genética , Adulto JovenRESUMEN
BACKGROUND: Detrimental effects of diarrhea on child growth and survival are well documented, but details of the underlying mechanisms remain poorly understood. Recent evidence demonstrates that perturbations to normal development of the gut microbiota in early life may contribute to growth faltering and susceptibility to related childhood diseases. We assessed associations between diarrhea, gut microbiota configuration, and childhood growth in the Peruvian Amazon. METHODS: Growth, diarrhea incidence, illness, pathogen infection, and antibiotic exposure were assessed monthly in a birth cohort of 271 children aged 0-24 months. Gut bacterial diversity and abundances of specific bacterial taxa were quantified by sequencing 16S rRNA genes in fecal samples collected at 6, 12, 18, and 24 months. Linear and generalized linear models were used to determine whether diarrhea was associated with altered microbiota and, in turn, if features of the microbiota were associated with the subsequent risk of diarrhea. RESULTS: Diarrheal frequency, duration, and severity were negatively associated with bacterial diversity and richness (P < .05). Children born stunted (length-for-age z-score [LAZ] ≤ -2) who were also severely stunted (LAZ ≤ -3) at the time of sampling exhibited the greatest degree of diarrhea-associated reductions in bacterial diversity and the slowest recovery of bacterial diversity after episodes of diarrhea. Increased bacterial diversity was predictive of reduced subsequent diarrhea from age 6 to 18 months. CONCLUSIONS: Persistent, severe growth faltering may reduce the gut microbiota's resistance and resilience to diarrhea, leading to greater losses of diversity and longer recovery times. This phenotype, in turn, denotes an increased risk of future diarrheal disease and growth faltering.
Asunto(s)
Microbioma Gastrointestinal , Adolescente , Adulto , Niño , Preescolar , Diarrea/epidemiología , Heces , Humanos , Lactante , Recién Nacido , Perú/epidemiología , ARN Ribosómico 16S/genética , Adulto JovenRESUMEN
Therapeutic food interventions have reduced mortality in children with severe acute malnutrition (SAM), but incomplete restoration of healthy growth remains a major problem. The relationships between the type of nutritional intervention, the gut microbiota, and therapeutic responses are unclear. In the current study, bacterial species whose proportional representation define a healthy gut microbiota as it assembles during the first two postnatal years were identified by applying a machine-learning-based approach to 16S ribosomal RNA data sets generated from monthly faecal samples obtained from birth onwards in a cohort of children living in an urban slum of Dhaka, Bangladesh, who exhibited consistently healthy growth. These age-discriminatory bacterial species were incorporated into a model that computes a 'relative microbiota maturity index' and 'microbiota-for-age Z-score' that compare postnatal assembly (defined here as maturation) of a child's faecal microbiota relative to healthy children of similar chronologic age. The model was applied to twins and triplets (to test for associations of these indices with genetic and environmental factors, including diarrhoea), children with SAM enrolled in a randomized trial of two food interventions, and children with moderate acute malnutrition. Our results indicate that SAM is associated with significant relative microbiota immaturity that is only partially ameliorated following two widely used nutritional interventions. Immaturity is also evident in less severe forms of malnutrition and correlates with anthropometric measurements. Microbiota maturity indices provide a microbial measure of human postnatal development, a way of classifying malnourished states, and a parameter for judging therapeutic efficacy. More prolonged interventions with existing or new therapeutic foods and/or addition of gut microbes may be needed to achieve enduring repair of gut microbiota immaturity in childhood malnutrition and improve clinical outcomes.
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Trastornos de la Nutrición del Lactante/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bangladesh , Heces/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Trastornos de la Nutrición del Lactante/dietoterapia , Masculino , Modelos Biológicos , Estado Nutricional , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Environmental Enteropathy (EE), characterized by alterations in intestinal structure, function, and immune activation, is believed to be an important contributor to childhood undernutrition and its associated morbidities, including stunting. Half of all global deaths in children < 5 years are attributable to under-nutrition, making the study of EE an area of critical priority. METHODS: Community based intervention study, divided into two sub-studies, 1) Longitudinal analyses and 2) Biopsy studies for identification of EE features via omics analyses. Birth cohorts in Matiari, Pakistan established: moderately or severely malnourished (weight for height Z score (WHZ) < - 2) children, and well-nourished (WHZ > 0) children. Blood, urine, and fecal samples, for evaluation of potential biomarkers, will be collected at various time points from all participants (longitudinal analyses). Participants will receive appropriate educational and nutritional interventions; non-responders will undergo further evaluation to determine eligibility for further workup, including upper gastrointestinal endoscopy. Histopathological changes in duodenal biopsies will be compared with duodenal biopsies obtained from USA controls who have celiac disease, Crohn's disease, or who were found to have normal histopathology. RNA-Seq will be employed to characterize mucosal gene expression across groups. Duodenal biopsies, luminal aspirates from the duodenum, and fecal samples will be analyzed to define microbial community composition (omic analyses). The relationship between histopathology, mucosal gene expression, and community configuration will be assessed using a variety of bioinformatic tools to gain better understanding of disease pathogenesis and to identify mechanism-based biomarkers. Ethical review committees at all collaborating institutions have approved this study. All results will be made available to the scientific community. DISCUSSION: Operational and ethical constraints for safely obtaining intestinal biopsies from children in resource-poor settings have led to a paucity of human tissue-based investigations to understand and reverse EE in vulnerable populations. Furthermore, EE biomarkers have rarely been correlated with gold standard histopathological confirmation. The Study of Environmental Enteropathy and Malnutrition (SEEM) is designed to better understand the pathophysiology, predictors, biomarkers, and potential management strategies of EE to inform strategies to eradicate this debilitating pathology and accelerate progress towards the 2030 Sustainable Development Goals. TRIAL REGISTRATION: Retrospectively registered; clinicaltrials.gov ID NCT03588013 .
Asunto(s)
Biomarcadores/análisis , Enfermedad Celíaca/diagnóstico , Duodeno/patología , Trastornos de la Nutrición del Lactante/diagnóstico , Desnutrición/diagnóstico , Biopsia , Enfermedad Celíaca/patología , Femenino , Crecimiento , Trastornos del Crecimiento/etiología , Humanos , Lactante , Recién Nacido , Masculino , Estado Nutricional , Pakistán , Proyectos de InvestigaciónRESUMEN
Undernutrition in Bangladeshi children is associated with disruption of postnatal gut microbiota assembly; compared with standard therapy, a microbiota-directed complementary food (MDCF) substantially improved their ponderal and linear growth. Here, we characterize a fatty acid amide hydrolase (FAAH) from a growth-associated intestinal strain of Faecalibacterium prausnitzii cultured from these children. This enzyme, expressed and purified from Escherichia coli, hydrolyzes a variety of N-acylamides, including oleoylethanolamide (OEA), neurotransmitters, and quorum sensing N-acyl homoserine lactones; it also synthesizes a range of N-acylamides, notably N-acyl amino acids. Treating germ-free mice with N-oleoylarginine and N-oleolyhistidine, major products of FAAH OEA metabolism, markedly affected expression of intestinal immune function pathways. Administering MDCF to Bangladeshi children considerably reduced fecal OEA, a satiety factor whose levels were negatively correlated with abundance and expression of their F. prausnitzii FAAH. This enzyme, structurally and catalytically distinct from mammalian FAAH, is positioned to regulate levels of a variety of bioactive molecules.
Asunto(s)
Amidohidrolasas , Endocannabinoides , Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Tracto Gastrointestinal , Animales , Preescolar , Humanos , Ratones , Amidohidrolasas/química , Amidohidrolasas/aislamiento & purificación , Amidohidrolasas/metabolismo , Bangladesh , Endocannabinoides/metabolismo , Escherichia coli/genética , Faecalibacterium prausnitzii/enzimología , Faecalibacterium prausnitzii/crecimiento & desarrollo , Heces/microbiología , Vida Libre de Gérmenes , Hidrólisis , Ácidos Oléicos/química , Ácidos Oléicos/metabolismo , Percepción de Quorum , Tracto Gastrointestinal/microbiología , Especificidad por SustratoRESUMEN
Studies of the human microbiome are progressing rapidly but have largely focused on populations living in high-income countries. With increasing evidence that the microbiome contributes to the pathogenesis of diseases that affect infants, children, and adults in low- and middle-income countries (LMICs), and with profound and rapid ongoing changes occurring in our lifestyles and biosphere, understanding the origins of and developing microbiome-directed therapeutics for treating a number of global health challenges requires the development of programs for studying human microbial ecology in LMICs. Here, we discuss how the establishment of long-term human microbial observatory programs in selected LMICs could provide one timely approach.
Asunto(s)
Países en Desarrollo , Microbiota , Humanos , Salud GlobalRESUMEN
Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.
RESUMEN
BACKGROUND: A randomized controlled trial in Bangladeshi children aged 12 to 18 months with moderate acute malnutrition found that dietary supplementation with the microbiota-directed complementary food (MDCF-2) significantly improved weight gain and repaired gut microbiota compared to the ready-to-use supplementary food. However, the MDCF-2 formulation was made daily from locally available ingredients and the need for a packaged, nutritionally compliant, and organoleptically acceptable MDCF-2 prototype was essential for future large-scale clinical studies. OBJECTIVE: The study aimed to develop and assess the acceptability of 3 alternative foil-packaged formulations of MDCF-2 in comparison to current MDCF-2. METHODS: Of the 3 packaged formulations, the Jumpstart version was provided in 2 sachets, the other 2 formulations were provided in a retort-stable foil pouch extended by sterilization, and microbiological growth was monitored over 10 months. The acceptability study included 40 children aged 8 to 12 months living in an urban slum in Dhaka, and the organoleptic properties were assessed using a 7-point hedonic scale. RESULTS: In the 100 g distributed over the 2 sessions, children consumed 82.5 ± 7.84 g (mean ± SD) of kitchen-prepared MDCF-2, 85.4 ± 7.15 g of the "Jumpstart" MDCF-2 formulation, 85.4 ± 8.70 g of the MDCF-2 with green banana powder, and 86.2 ± 4.26 g of the MDCF-2 with sweet potato formulation. The "Jumpstart" MDCF-2 and MDCF-2 with sweet potato achieved the highest overall acceptability scores on the hedonic scale; although none of the shelf-stable formulations were significantly different from the kitchen-prepared MDCF-2. CONCLUSIONS: Packaged, shelf-stable prototypes of MDCF-2 exhibited comparable acceptability among Bangladeshi children aged 8 to 12 months to the original freshly prepared formulation.
Plain language titleDevelopment and Acceptability of Shelf-Stable Microbiota-Directed Complementary FoodsPlain language summaryCountries around the world are making progress in fighting malnutrition, but it may be challenging to achieve the global nutrition targets for undernourished children by 2025 at the current rate. To address this problem, we need special types of food that can help children grow, develop properly, and sustain their growth. Children with moderate acute malnutrition have imbalanced gut bacteria. By providing them with the right nutrition, we can restore the healthy bacteria in their gut using a special food called microbiota-directed complementary food (MDCF). Currently, this food is made daily in the icddr, b established field kitchen, which follows standard production measures to control the quality of MDCF preparation, but we need to create stable prototypes that can be stored and used in different settings. This study was designed to develop shelf-stable new formulations in industrial settings and check their acceptability among children with moderate acute malnutrition. The shelf life of the food was extended using a sterilization method, and its microbiological safety was monitored for a year. The actual consumption and acceptability of these foods were evaluated and all these formulations were acceptable by the children and their mother. The children consumed all 4 food formulations in substantial quantities, with consumption rates exceeding 80% for each formulation. This study showed positive results in Bangladesh, but more research is needed to see if these formulations work well in other geographies and over longer periods.