Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 226: 109333, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436570

RESUMEN

Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.


Asunto(s)
Tiburones , Animales , Tiburones/genética , Tiburones/metabolismo , Morfolinos/genética , Morfolinos/farmacología , Morfolinos/metabolismo , Técnicas de Silenciamiento del Gen , Antígeno Nuclear de Célula en Proliferación/genética , Retina/metabolismo
2.
Histochem Cell Biol ; 158(4): 401-409, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35779079

RESUMEN

Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.


Asunto(s)
Hiperglucemia , Pez Cebra , Animales , Proliferación Celular , Glucosa/metabolismo , Hiperglucemia/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Retina/metabolismo
3.
Prostaglandins Other Lipid Mediat ; 152: 106498, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33035690

RESUMEN

The telencephalon of adult mammals shows constitutive neurogenesis, and disease or traumatic injuries alter the rate of neurogenesis in the adult brain. Understanding the molecular signals that control adult brain neurogenesis is of crucial importance for the development of therapies to promote regeneration in the injured or diseased brain. Here, I reviewed our current knowledge on the role of cyclooxygenases and prostaglandins in controlling adult brain neurogenesis. Current data indicate that cyclooxygenase-2 derived prostaglandin E2 acting through EP receptors promotes neurogenesis in adult neurogenic niches of the telencephalon and that manipulations of this signalling pathway could be used to promote neurogenesis under pathological conditions. In this review article, I also propose new research directions to increase our knowledge on the role of this signalling pathway in neurogenesis.


Asunto(s)
Encéfalo , Neurogénesis , Prostaglandina-Endoperóxido Sintasas , Prostaglandinas , Adulto , Proliferación Celular , Humanos
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769146

RESUMEN

It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3-4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.


Asunto(s)
Envejecimiento/fisiología , Mitosis , Retina/fisiología , Pez Cebra/fisiología , Animales , Retina/citología
5.
Development ; 143(9): 1464-74, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26965370

RESUMEN

In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells.


Asunto(s)
Larva/citología , Neuronas Motoras/citología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/citología , Pez Cebra/crecimiento & desarrollo , Animales , Dexametasona/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunosupresores/farmacología , Larva/genética , Macrófagos/inmunología , Metronidazol/farmacología , Microglía/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Oligodendroglía/citología , Factor de Transcripción PAX2/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Hum Mol Genet ; 23(4): 855-69, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24067532

RESUMEN

Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.


Asunto(s)
Lectinas Tipo C/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Animales , Línea Celular , Supervivencia Celular , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/patología , Neuritas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Pez Cebra
7.
Exp Eye Res ; 135: 81-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25925848

RESUMEN

The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript was mainly observed in the myoid region of both short and long photoreceptors, and was also observed in bipolar, amacrine and ganglion cells. Some 5-HT-immunoreactive amacrine cells have already been reported in the adult lamprey retina. Our study supports the serotonergic phenotype of these amacrine cells of lampreys and also suggests that other retinal neurons could synthesize serotonin at levels not detectable by immunohistochemistry. The expression of the tph transcript in retinal photoreceptors of lampreys strongly suggests that they synthesize melatonin and that this pathway appeared early and has been conserved throughout evolution in vertebrates. The expression of tph and 5-ht1a in neuroblasts also indicates that serotonin might be playing developmental roles in the larval lamprey retina.


Asunto(s)
Petromyzon/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Retina/metabolismo , Triptófano Hidroxilasa/metabolismo , Células Amacrinas/metabolismo , Animales , Inmunohistoquímica , Hibridación in Situ , Larva/metabolismo , Células-Madre Neurales/metabolismo , Células Fotorreceptoras de Vertebrados , ARN Mensajero/metabolismo , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/metabolismo
8.
Neural Plast ; 2015: 350750, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25861481

RESUMEN

Following a spinal injury, lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by the regeneration of descending axons from the brain and the production of new neurons in the spinal cord. Here, we aimed to analyse the changes in the dopaminergic system of the sea lamprey after a complete spinal transection by studying the changes in dopaminergic cell numbers and dopaminergic innervation in the spinal cord. Changes in the expression of the D2 receptor were also studied. We report the full anatomical regeneration of the dopaminergic system after an initial decrease in the number of dopaminergic cells and fibres. Numbers of dopaminergic cells were recovered rostrally and caudally to the site of injury. Quantification of dopaminergic profiles revealed the full recovery of the dopaminergic innervation of the spinal cord rostral and caudal to the site of injury. Interestingly, no changes in the expression of the D2 receptor were observed at time points in which a reduced dopaminergic innervation of the spinal cord was observed. Our observations reveal that in lampreys a spinal cord injury is followed by the full anatomical recovery of the dopaminergic system.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Regeneración Nerviosa , Traumatismos de la Médula Espinal/fisiopatología , Animales , Recuento de Células , Neuronas Dopaminérgicas/metabolismo , Lampreas , Receptores de Dopamina D2/metabolismo , Traumatismos de la Médula Espinal/metabolismo
9.
Glia ; 62(8): 1254-69, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24733772

RESUMEN

In contrast to mammals, the spinal cord of lampreys spontaneously recovers from a complete spinal cord injury (SCI). Understanding the differences between lampreys and mammals in their response to SCI could provide valuable information to propose new therapies. Unique properties of the astrocytes of lampreys probably contribute to the success of spinal cord regeneration. The main aim of our study was to investigate, in the sea lamprey, the release of aminoacidergic neurotransmitters and the subsequent astrocyte uptake of these neurotransmitters during the first week following a complete SCI by detecting glutamate, GABA, glycine, Hu and cytokeratin immunoreactivities. This is the first time that aminoacidergic neurotransmitter release from neurons and the subsequent astrocytic response after SCI are analysed by immunocytochemistry in any vertebrate. Spinal injury caused the immediate loss of glutamate, GABA and glycine immunoreactivities in neurons close to the lesion site (except for the cerebrospinal fluid-contacting GABA cells). Only after SCI, astrocytes showed glutamate, GABA and glycine immunoreactivity. Treatment with an inhibitor of glutamate transporters (DL-TBOA) showed that neuronal glutamate was actively transported into astrocytes after SCI. Moreover, after SCI, a massive accumulation of inhibitory neurotransmitters around some reticulospinal axons was observed. Presence of GABA accumulation significantly correlated with a higher survival ability of these neurons. Our data show that, in contrast to mammals, astrocytes of lampreys have a high capacity to actively uptake glutamate after SCI. GABA may play a protective role that could explain the higher regenerative and survival ability of specific descending neurons of lampreys.


Asunto(s)
Astrocitos/fisiología , Lampreas/fisiología , Neuronas/fisiología , Neurotransmisores/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Animales , Axones/fisiología , Proteínas de Peces/metabolismo , Técnica del Anticuerpo Fluorescente , Ácido Glutámico/metabolismo , Glicina/metabolismo , Inmunohistoquímica , Queratinas/metabolismo , Microscopía Confocal , Fotomicrografía , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
10.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38550608

RESUMEN

RGM interactions with its receptor Neogenin play an important role in the regulation of axonal guidance or cell death in the developing central nervous system. The sea lamprey RGMA transcript has been recently identified. However, its expression has been only studied in the spinal cord of mature (premetamorphic) larval sea lampreys. Here, we report the expression of the sea lamprey RGMA transcript in developing embryos and prolarvae by means of in situ hybridization. Our data show that the RGMA transcript is broadly expressed in the central nervous system of embryos and prolarvae and with a rostro-caudal gradient of expression.

11.
Cell Prolif ; 57(5): e13594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155412

RESUMEN

The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord. These results fitted very nicely with available single-cell RNAseq data revealing that floor plate cells show differential expression of 1 of the 2 COX2 zebrafish genes (ptgs2a). Indeed, several selective COX2 inhibitors and two different morpholinos against ptgs2a reduced the number of serotonergic neurons in the ventral spinal cord and led to locomotor deficits. Single-cell RNAseq data and different pharmacological manipulations further revealed that COX2-floor plate-derived prostaglandin D2 promotes neurogenesis in the developing spinal cord by promoting mitotic activity in progenitor cells. Rescue experiments using a phosphodiesterase-4 inhibitor suggest that intracellular changes in cAMP levels underlie the effects of COX inhibitors on neurogenesis and locomotion. Our study provides compelling in vivo evidence showing that prostaglandin signalling promotes neurogenesis in the ventral spinal cord.


Asunto(s)
Ciclooxigenasa 2 , Neurogénesis , Médula Espinal , Pez Cebra , Animales , Pez Cebra/metabolismo , Neurogénesis/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de la Ciclooxigenasa 2/farmacología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Transducción de Señal/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología
12.
Comput Struct Biotechnol J ; 23: 347-357, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205155

RESUMEN

In contrast to humans, lampreys spontaneously recover their swimming capacity after a complete spinal cord injury (SCI). This recovery process involves the regeneration of descending axons. Spontaneous axon regeneration in lampreys has been mainly studied in giant descending neurons. However, the regeneration of neurochemically distinct descending neuronal populations with small-caliber axons, as those found in mammals, has been less studied. Cholecystokinin (CCK) is a regulatory neuropeptide found in the brain and spinal cord that modulates several processes such as satiety, or locomotion. CCK shows high evolutionary conservation and is present in all vertebrate species. Work in lampreys has shown that all CCKergic spinal cord axons originate in a single neuronal population located in the caudal rhombencephalon. Here, we investigate the spontaneous regeneration of CCKergic descending axons in larval lampreys following a complete SCI. Using anti-CCK-8 immunofluorescence, confocal microscopy and lightning adaptive deconvolution, we demonstrate the partial regeneration of CCKergic axons (81% of the number of axonal profiles seen in controls) 10 weeks after the injury. Our data also revealed a preference for regeneration of CCKergic axons in lateral spinal cord regions. Regenerated CCKergic axons exhibit colocalization with synaptic vesicle marker SV2, indicative of functional synaptic connections. We also extracted swimming dynamics in injured animals by using DeepLabCut. Interestingly, the degree of CCKergic reinnervation correlated with improved swimming performance in injured animals, suggesting a potential role in locomotor recovery. These findings open avenues for further exploration into the role of specific neuropeptidergic systems in post-SCI spinal locomotor networks.

13.
Dev Neurosci ; 35(4): 285-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23796505

RESUMEN

Dopamine plays a number of important roles in the nervous system and the dopaminergic system is affected in several brain disorders. It is therefore of great interest to study the axonal guidance systems that specifically participate in the correct establishment of dopaminergic projections during development and possibly during regenerative processes. In recent years, several reports have shown that Slits and their Robo receptors control the growth of longitudinal (both ascending and descending) mesodiencephalic dopaminergic axons to their appropriate target areas. In vitro studies have shown that Slit1, 2 and 3 are potent repellents of dopamine neurite extension. In vivo studies using both mice and zebrafish mutants for Slits and Robos have shown that Slits and Robos control the lateral and dorsoventral positioning of dopaminergic longitudinal projections during early development. In the present review, we aimed to compile the existing knowledge from both in vitro and in vivo studies on the role of Slit and Robo proteins in the development of dopaminergic neurons as a basis for future studies.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Glicoproteínas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Pez Cebra/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Femenino , Ratones , Mutación/fisiología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Embarazo , Cultivo Primario de Células , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Roundabout
14.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37143448

RESUMEN

Neogenin is a receptor mainly known for its roles during axon pathfinding. However, neogenin is expressed in neuronal precursors of ventricular and subventricular zones of the nervous system and recent work has shown that it regulates adult neurogenesis. Here, we generated an antibody against the sea lamprey neogenin to study its expression in the larval spinal cord. Immunofluorescence experiments show that neogenin is expressed in ependymo-radial glial cells (ERGs) located in the ependymal region of the central canal of mature larval sea lampreys. Our results provide a basis for the future study of the role of neogenin in lamprey ERGs.

15.
J Comp Neurol ; 531(1): 58-88, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150899

RESUMEN

The expression of the corticotropin-releasing hormone (PmCRH) and the CRH-binding protein (PmCRHBP) mRNAs was studied by in situ hybridization in the brain of prolarvae, larvae, and adults of the sea lamprey Petromyzon marinus. We also generated an antibody against the PmCRH mature peptide to study the distribution of PmCRH-immunoreactive cells and fibers. PmCRH immunohistochemistry was combined with antityrosine hydroxylase immunohistochemistry, PmCRHBP in situ hybridization, or neurobiotin transport from the spinal cord. The most numerous PmCRH-expressing cells were observed in the magnocellular preoptic nucleus-paraventricular nucleus and in the superior and medial rhombencephalic reticular formation. PmCRH expression was more extended in adults than in larvae, and some cell populations were mainly (olfactory bulb) or only (striatum, ventral hypothalamus, prethalamus) observed in adults. The preopto-paraventricular fibers form conspicuous tracts coursing toward the neurohypophysis, but many immunoreactive fibers were also observed coursing in many other brain regions. Brain descending fibers in the spinal cord mainly come from cells located in the isthmus and in the medial rhombencephalic reticular nucleus. The distribution of PmCRHBP-expressing neurons was different from that of PmCRH cells, with cells mainly present in the septum, striatum, preoptic region, tuberal hypothalamus, pretectum, pineal complex, isthmus, reticular formation, and spinal cord. Again, expression in adults was more extended than in larvae. PmCRH- and PmCRHBP-expressing cells are different, excluding colocalization of these substances in the same neuron. Present findings reveal a complex CRH/CRHBP system in the brain of the oldest extant vertebrate group, the agnathans, which shows similarities but important divergences with that of mammals.


Asunto(s)
Petromyzon , Animales , Petromyzon/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Mamíferos
16.
Data Brief ; 46: 108809, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36569535

RESUMEN

Spinal cord injury (SCI) leads to severe functional deficits. Currently, there are no available pharmacological treatments to promote neurological recovery in SCI patients. Recent work from our group has shown that a baclofen treatment can promote functional recovery after a compression SCI in mice [1]. Here, we provide transcriptomic (RNA-seq) data from adult mouse spinal cords collected 7 days after a compression SCI and baclofen (vs vehicle) administration. The Illumina NovaSeq 6000 platform was used to generate the raw transcriptomic data. In addition, we also present bioinformatic analyses including differential gene expression analysis, enrichment analyses for various functional annotations (gene ontology, KEGG and BioCarta pathways or InterPro domains) and transcription factor targets. The raw RNA-seq data has been uploaded to the NCBI Sequence Read Archive (SRA) database (Bioproject ID PRJNA886048). The data generated from the bioinformatic analyses is contained within the article.

17.
Spine J ; 23(3): 379-391, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36155240

RESUMEN

BACKGROUND CONTEXT: Traumatic spinal cord injury (SCI) leads to severe motor and sensory functional impairments that affect personal and social behaviors. Medical advancements have improved supportive therapeutic measures for SCI patients, but no effective neuroregenerative therapeutic options exist to date. Deficits in motor function are the most visible consequence of SCI. However, other complications, as spasticity, produce a significant impact on SCI patient's welfare. Baclofen, a GABA agonist, is the most effective drug for spasticity treatment. Interestingly, emerging data reveals that baclofen can also play a role on neuroprotection and regeneration after SCI. PURPOSE: The goal of this study was to understand the potential of baclofen as a treatment to promote recovery after SCI. STUDY DESIGN: We used a pre-clinical SCI mouse model with the administration of baclofen 1 mg/Kg at different time-points after injury. METHODS: Behavior analysis (locomotor and bladder function) were performed during nine weeks of the in vivo experiment. Afterwards, spinal cords were collected and processed for histological and molecular analysis. RESULTS: Our data showed that baclofen leads to locomotor improvements in mice when its administered acutely after SCI. Moreover, baclofen administration also led to improved bladder function control in all experimental groups. Interestingly, acute baclofen administration modulates microglia activation state and levels of circulating chemokines and cytokines, suggesting a putative role of baclofen in the modulation of the immune response. CONCLUSIONS: Although further studies must be performed to understand the mechanisms that underlie the functional improvements produced by baclofen, our data shed light into the pharmacological potential of baclofen to promote recovery after SCI. CLINICAL RELEVANCE: Our outcomes revealed that baclofen, a well-known drug used for spasticity management, improves the motor performance after SCI in a pre-clinical animal model. Our data opens new avenues for pharmacological strategies design to promote SCI recovery.


Asunto(s)
Baclofeno , Traumatismos de la Médula Espinal , Ratones , Animales , Baclofeno/farmacología , Baclofeno/uso terapéutico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Recuperación de la Función
18.
Front Mol Neurosci ; 16: 1078634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008782

RESUMEN

Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments.

19.
Nat Ecol Evol ; 7(10): 1714-1728, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37710042

RESUMEN

The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.


Asunto(s)
Petromyzon , Vertebrados , Animales , Ratones , Filogenia , Vertebrados/genética , Petromyzon/genética , Cabeza , Encéfalo
20.
Front Neurosci ; 16: 994256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161154

RESUMEN

Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) are a group of conserved eukaryotic kinases phosphorylating tyrosine, serine, and threonine residues. The human DYRK family comprises 5 members (DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4). The different DYRKs have been implicated in neurological diseases, cancer, and virus infection. Specifically, DYRK2 has been mainly implicated in cancer progression. However, its role in healthy and pathological nervous system function has been overlooked. In this context, we review current available data on DYRK2 in the nervous system, where the available studies indicate that it has key roles in neuronal development and function. DYRK2 regulates neuronal morphogenesis (e.g., axon growth and branching) by phosphorylating cytoskeletal elements (e.g., doublecortin). Comparative data reveals that it is involved in the development of olfactory and visual systems, the spinal cord and possibly the cortex. DYRK2 also participates in processes such as olfaction, vision and, learning. However, DYRK2 could be involved in other brain functions since available expression data shows that it is expressed across the whole brain. High DYRK2 protein levels have been detected in basal ganglia and cerebellum. In adult nervous system, DYRK2 mRNA expression is highest in the cortex, hippocampus, and retina. Regarding nervous system disease, DYRK2 has been implicated in neuroblastoma, glioma, epilepsy, neuroinflammation, Alzheimer's disease, Parkinson's disease, spinal cord injury and virus infection. DYRK2 upregulation usually has a negative impact in cancer-related conditions and a positive impact in non-malignant conditions. Its role in axon growth makes DYRK2 as a promising target for spinal cord or brain injury and regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA