Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Chem Chem Phys ; 24(39): 24562-24569, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193851

RESUMEN

The identification of polymorphs in organic semiconductors allows for establishing structure-property relationships and gaining understanding of microscopic charge transport physics. Thin films of 2,7-bis(octyloxy)[1]benzothieno[3,2-b]-benzothiophene (C8O-BTBT-OC8) exhibit a substrate-induced phase (SIP) that differs from the bulk structure, with important implications for the electrical performance in organic field effect transistors (OFETs). Here we combine grazing incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) to study how temperature affects the morphology and structure of C8O-BTBT-OC8 films grown by physical vapor deposition on SiO2. We report a structural transition for C8O-BTBT-OC8 films, from the SIP encountered at room temperature (RT) to a high temperature phase (HTP) when the films are annealed at a temperature T ≥ 90 °C. In this HTP structure, the molecules are packed with a tilt angle (≈39° respect to the surface normal) and an enlarged in-plane unit cell. Although the structural transition is reversible on cooling at RT, AFM reveals that molecular layers at the SiO2 interface can remain with the HTP structure, buried under the film ordered in the SIP. For annealing temperatures close to 150 °C, dewetting occurs leading to a more complex morphological and structural scenario upon cooling, with coexistence of different molecular tilts. Because the molecular packing at the interface has direct impact in the charge carrier mobility of OFETs, identifying the different polymorphs of a material in the thin film form and determining their stability at the interfaces are key factors for device optimization.

2.
Phys Chem Chem Phys ; 23(26): 14363-14371, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34169951

RESUMEN

The dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation. The effect at the basis of such self-assembling seems to be released by the all upwards dipole orientation adopted on the ClAlPc second layer. The low electronic corrugation of the bilayer results in a higher mobility of the fullerenes which for similar coverages diffuse large distances to reach uncovered first layer regions. Density functional theory calculations corroborate the experimental observations indicating the relevance of charge transfer, potential energy surface corrugation, C60 on-surface diffusion barriers and screening. The structure of the co-adsorbed C60 and ClAlPc layers strongly depends on the deposition sequence. Phase-separation, where each molecule adopts the single-component assembly, occurs if C60 is deposited first. The present results contribute to understanding the influence of the dipolar nature of molecular layers on the electronic and structure of donor/acceptor heterojunctions, which is crucial for device design via engineering the energy level alignment at organic-organic and organic-metal interfaces.

3.
Chemistry ; 24(49): 12950-12960, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29893444

RESUMEN

A chiral ZnII porphyrin derivative 1 and its achiral analogue 2 were studied in the solid state. Considering the rich molecular recognition of designed metalloporphyrins 1 and 2 and their tendency to crystallize, they were recrystallized from two solvent mixtures (CH2 Cl2 /CH3 OH and CH2 Cl2 /hexane). As a result, four different crystalline arrangements (1 a,b and 2 a,b, from 0D to 2D) were obtained. Solid-state studies were performed on all the species to analyze the role played by chirality, solvent mixtures, and surfaces (mica and HOPG) in the supramolecular arrangements. By means of combinations of solvents and substrates a variety of microsized species was obtained, from vesicles to flower-shaped arrays, including geometrical microcrystals. Overall, the results emphasize the environmental susceptibility of metalloporphyrins and how this feature must be taken into account in their design.

4.
Phys Chem Chem Phys ; 18(48): 33303-33309, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27897280

RESUMEN

Two dimensional copper oxides obtained on Cu(111) by air-enriched argon sputtering plus annealing have been measured at room temperature by means of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. Depending on the oxygen content different oxide frameworks and diverse stoichiometric metal/oxide interfaces exist. In particular, we report on a novel open honeycomb structure with a large unit cell which is modeled as a two dimensional network made out of Cu3O units. This lattice coexists with other oxide structures richer in oxygen and is suggested to develop towards these denser phases by oxygen incorporation.

5.
Chem Mater ; 36(1): 585-595, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222937

RESUMEN

Understanding structure and polymorphism is relevant for any organic device optimization, and it is of particular relevance in 7-decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) since high carrier mobility in Ph-BTBT-10 thin films has been linked to the structural transformation from the metastable thin-film phase to the thermodynamically stable bilayer structure via thermal annealing. We combine here a systematic nanoscale morphological analysis with local Kelvin probe force microcopy (KPFM) that demonstrates the formation of a polar polymorph in thin films as an intermediate structure for thicknesses lower than 20 nm. The polar structure develops with thickness a variable amount of structural defects in the form of individual flipped molecules (point defects) or sizable polar domains, and evolves toward the reported nonpolar thin-film phase. The direct experimental evidence is supported by electronic structure density functional theory calculations. The structure of the film has dramatic effects on the electronic properties, leading to a decrease in the film work function (by up to 1 eV) and a considerable broadening of the occupied molecular orbitals, attributed to electrostatic disorder. From an advanced characterization point of view, KPFM stands out as a valuable tool for evaluating electrostatic disorder and the conceivable emergence of polar polymorphs in organic thin films. The emergence of polar assemblies introduces a critical consideration for other asymmetric BTBT derivatives, which may be pivotal to understanding the structure-property relationships in organic field-effect transistors (OFETs). A precise determination of any polar assemblies close to the dielectric interface is critical for the judicious design and upgrading of high-performance OFETs.

6.
ACS Appl Energy Mater ; 7(3): 874-884, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38362252

RESUMEN

Recent developments in Sb2Se3 van der Waals material as an absorber candidate for thin film photovoltaic applications have demonstrated the importance of surface management for improving the conversion efficiency of this technology. Sb2Se3 thin films' versatility in delivering good efficiencies in both superstrate and substrate configurations, coupled with a compatibility with various low-temperature deposition techniques (below 500 °C and often below 350 °C), makes them highly attractive for advanced photovoltaic applications. This study presents a comparative analysis of the most effective chemical etchings developed for related thin film chalcogenide technologies to identify and understand the most appropriate surface chemical treatments for Sb2Se3 in substrate configuration, synthesized using a sequential process at very low temperatures (320 °C). Eight different chemical etchings were tested and investigated, and the results show that only KCN-based solutions lead to an improvement in the solar cell's performance, primarily due to an increase in the fill factor. Surface analysis of the samples shows that KCN etching produces very Sb-rich surfaces that do not affect the properties of the bulk. It is proposed that this Sb-rich interface inverts the surface polarity, creating a "buried junction" with CdS, thereby explaining the improvement of the fill factor of the devices, as confirmed by device modeling. The results of this study underscore the importance of surface management in low-temperature synthesized Sb2Se3 absorbers, where Sb-rich interfaces are crucial for achieving high-efficiency devices. This research contributes to ongoing efforts to improve the performance of Sb2Se3 thin film photovoltaic technology and could pave the way for the development of more efficient solar cells with optimized interfaces.

7.
ACS Appl Mater Interfaces ; 15(4): 5521-5528, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651188

RESUMEN

Contact resistance and charge trapping are two key obstacles, often intertwined, that negatively impact on the performance of organic field-effect transistors (OFETs) by reducing the overall device mobility and provoking a nonideal behavior. Here, we expose organic semiconductor (OSC) thin films based on blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8) with polystyrene (PS) to (i) a CH3CN vapor annealing process, (ii) a doping I2/water procedure, and (iii) vapors of I2/CH3CN to simultaneously dope and anneal the films. After careful analysis of the OFET electrical characteristics and by performing local Kelvin probe force microscopy studies, we found that the vapor annealing process predominantly reduces interfacial shallow traps, while the chemical doping of the OSC film is responsible for the diminishment of deeper traps and promoting a significant reduction of the contact resistance. Remarkably, the devices treated with I2/CH3CN reveal ideal electrical characteristics with a low level of shallow/deep traps and a very high and almost gate-independent mobility. Hence, this work demonstrates the promising synergistic effects of performing simultaneously a solvent vapor annealing and doping procedure, which can lead to trap-free OSC films with negligible contact resistance problems.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38041636

RESUMEN

Current improvement in perovskite solar cells (PSCs) has been achieved by interface engineering and fine-tuning of charge-selective contacts. In this work, we report three novel molecules that can form self-assembled layers (SAMs) as an alternative to the most commonly used p-type contact material, PTAA. Two of these molecules have bidentate anchoring groups (MC-54 and MC-55), while the last one is monodentate (MC-45). Besides the PTAA comparison, we also compared those two types of molecules and their effect on the solar cell's performance. Devices fabricated with MC-54 and MC-55 showed a remarkable field factor (about 80%) and a better current density, leading to higher efficient solar cells in comparison to MC-45 and PTAA. Moreover, mono- and bidentate present higher stability and reproducibility in comparison to PTAA.

9.
J Mater Chem A Mater ; 11(33): 17616-17627, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38013931

RESUMEN

Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb2(S,Se)3, such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of Sb2Se3 thin films at pressure above 1 atm. It is shown that by increasing the annealing temperature and pressure, the height and density of the micro-columnar structures grows monotonically, resulting in SbSeI single-crystal columns up to 30 µm, and tuneable morphology. In addition, solar cell prototypes with substrate configuration have shown remarkable Voc values above 550 mV and 1.8 eV bandgap.

10.
Materials (Basel) ; 15(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35207994

RESUMEN

The remarkable dual nature of faceted-charge patchy metal fluoride nanocrystals arises from the spontaneous selective coordination of anionic and cationic ligands on the different facets of the nanocrystals. In previous studies, the identification and origin of the charge at the patches were obtained by combining computer simulations with indirect experimental evidence. Taking a step further, we report herein the first direct real-space identification by Kelvin probe force microscopy of the predicted faceted-charge patchy behavior, allowing the image of the dual faceted-charge surfaces. High-resolution transmission electron microscopy reveals the detailed nanocrystal faceting and allows unambiguously inferring the hydrophilic or hydrophobic role of each facet from the identification of the surface atoms exposed at the respective crystallographic planes. The success of the study lies in a foresighted synthesis methodology designed to tune the nanocrystal size to be suitable for microscopy studies and demanding applications.

11.
ACS Appl Mater Interfaces ; 14(39): 44632-44641, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36126171

RESUMEN

We demonstrate the key role of charge-transfer complexes in surface doping as a successful methodology for improving channel field-effect mobility and reducing the threshold voltage in organic field-effect transistors (OFETs), as well as raising the film conductivity. Demonstrated here for 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) doped with 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ), channel doping by sequential deposition is consistently rationalized by the development of a cocrystalline structure that forms and evolves from the surface of the organic semiconductor film without trading the thin-film structure integrity. This scenario brings higher benefits for the device operation than doping by codeposition, where a decrease in the field-effect mobility of the device, even for a dopant content of only 1 mol %, makes codeposition less suitable. Insight into the structural and electronic properties of the interface satisfactorily explains the improved performance of OFETs upon the incorporation of the dopant and provides an understanding of the mechanism of doping in this system.

12.
iScience ; 25(12): 105686, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36578318

RESUMEN

Our work examines the structural-electronic correlation of a new curcuminoid, AlkCCMoid, as a dielectric material on different substrates. For this purpose, we show a homemade sublimation method that allows the direct deposition of molecules on any type of matrix. The electronic properties of AlkCCMoid have been evaluated by measurements on single crystals, microcrystalline powder, and sublimated samples, respectively. GIWAXS studies on surfaces and XRD studies on powder have revealed the existence of polymorphs and the effect that substrates have on curcuminoid organization. We describe the dielectric nature of our system and identify how different polymorphs can affect electronic parameters such as permittivity, all corroborated by DFT calculations.

13.
Phys Chem Chem Phys ; 13(10): 4220-3, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21283906

RESUMEN

We present a route to change the "compositional" order of highly crystalline binary layers comprising diindenoperylene and copper-phthalocyanines from two- to one-dimensional periodicity. This is achieved by exchanging fluorine with hydrogen atoms in the phthalocyanines, thereby reducing the C-F···H-C interactions and allowing the interplay of long-range electrostatic interactions in mesoscopic phases. Linear patterns are thus obtained, whose periodicity can be additionally tuned by an appropriate stoichiometry of the components.

14.
Phys Chem Chem Phys ; 13(13): 5940-4, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21336359

RESUMEN

We combine X-ray reflectivity and scanning electron microscopy measurements to investigate the mechanisms involved in the growth of vertical arrays of phthalocyanine nanowires directed by templates of Au nanoparticles. The study has been carried out for H(16)CuPc at different substrate temperatures. It is shown that three organic morphologies evolve during the growth: 1D nanostructures on top of the Au nanoparticles, a multilayer film on the substrate and a layer wetting the gold nanoparticles. For substrate temperatures below 100 °C there is a coexisting and competing growth of the three structures, whereas beyond this temperature the 1D growth on the nanoparticles is predominantly favored. The observance of two regimes with the temperature is characterized by two different activation energies. Both the length of the 1D structures and the thickness of the multilayer film can be precisely controlled by the substrate temperature which is of importance for application of vertical organic nanowires as donor/acceptor architecture in organic solar cells.


Asunto(s)
Oro/química , Indoles/química , Nanopartículas del Metal/química , Modelos Biológicos , Nanocables/química , Isoindoles , Microscopía Electrónica de Rastreo
15.
Nanoscale Adv ; 2(10): 4529-4538, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36132938

RESUMEN

We provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of C60F48 depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C60. Though fluorine-metal bonding can be detected depending on the molecular surface density, no ordered fluorine structures are observed. We show the implications of the metal-dependent de-fluorination in the electronic structure of the molecules and the energy alignment at the molecule-metal interface. Molecular dynamics simulations with ReaxFF reactive force field corroborate the experimental facts and provide a detailed mechanistic picture of the surface-induced de-fluorination, which involves the rotation of the molecule on the surface. Outstandingly, a thermodynamic analysis indicates that the effect of the metal surface is lowering and diminishing the energy barrier for C-F cleave, demonstrating the catalytic role of the surface. The present study contributes to in-depth knowledge of the mechanisms that affect the degree of stability of chemical species on surfaces, which is essential to advance our understanding of the chemical reactivity of metals and their role in on-surface chemical reactions.

16.
ACS Appl Mater Interfaces ; 12(51): 57578-57586, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33290038

RESUMEN

Two derivatives of [1]benzothieno[3,2-b][1]benzothiophene (BTBT), namely, 2,7-dioctyl-BTBT (C8-BTBT) and 2,7-diphenyl-BTBT (DPh-BTBT), belonging to one of the best performing organic semiconductor (OSC) families, have been employed to investigate the influence of the substitutional side groups on the properties of the interface created when they are in contact with dopant molecules. As a molecular p-dopant, the fluorinated fullerene C60F48 is used because of its adequate electronic levels and its bulky molecular structure. Despite the dissimilarity introduced by the OSC film termination, dopant thin films grown on top adopt the same (111)-oriented FCC crystalline structure in the two cases. However, the early stage distribution of the dopant on each OSC film surface is dramatically influenced by the group side, leading to distinct host-dopant interfacial morphologies that strongly affect the nanoscale local work function. In this context, Kelvin probe force microscopy and photoelectron emission spectroscopy provide a comprehensive picture of the interfacial electronic properties. The extent of charge transfer and energy level alignment between OSCs and dopant are debated in light of the differences in the ionization potential of the OSC in the films, the interface nanomorphology, and the electronic coupling with the substrate.

17.
ACS Appl Mater Interfaces ; 12(22): 25444-25452, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32388975

RESUMEN

Establishing the rather complex correlation between the structure and the charge transfer in organic-organic heterostructures is of utmost importance for organic electronics and requires spatially resolved structural, chemical, and electronic details. Insight into this issue is provided here by combining atomic force microscopy, Kelvin probe force microscopy, photoemission electron microscopy, and low-energy electron microscopy for investigating a case study. We select the interface formed by pentacene (PEN), benchmark among the donor organic semiconductors, and a p-type dopant from the family of fluorinated fullerenes. As for Buckminsterfullerene (C60), the growth of its fluorinated derivative C60F48 is influenced by the thickness and crystallinity of the PEN buffer layer, but the behavior is markedly different. We provide a microscopic description of the C60F48/PEN interface formation and analyze the consequences in the electronic properties of the final heterostructure. For just one single layer of PEN, a laterally complete but noncompact C60F48/PEN interface is created, importantly affecting the surface work function. Nonetheless, from the very beginning of the second layer formation, the presence of epitaxial and nonepitaxial PEN domains dramatically influences the growth dynamics and extremely well packed two-dimensional C60F48 islands develop. Insightful elemental maps of the C60F48/PEN surface spatially resolve the nonuniform distribution of the dopant molecules, which leads to a heterogeneous work function landscape.

18.
ACS Appl Mater Interfaces ; 12(25): 28416-28425, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32460481

RESUMEN

The present work assesses improved carrier injection in organic field-effect transistors by contact doping and provides fundamental insight into the multiple impacts that the dopant/semiconductor interface details have on the long-term and thermal stability of devices. We investigate donor [1]benzothieno[3,2-b]-[1]benzothiophene (BTBT) derivatives with one and two octyl side chains attached to the core, therefore constituting asymmetric (BTBT-C8) and symmetric (C8-BTBT-C8) molecules, respectively. Our results reveal that films formed out of the asymmetric BTBT-C8 expose the same alkyl-terminated surface as the C8-BTBT-C8 films do. In both cases, the consequence of depositing fluorinated fullerene (C60F48) as a molecular p-dopant is the formation of C60F48 crystalline islands decorating the step edges of the underlying semiconductor film surface. We demonstrate that local work function changes along with a peculiar nanomorphology lead to the double beneficial effect of lowering the contact resistance and providing long-term and enhanced thermal stability of the devices.

19.
Chemphyschem ; 10(14): 2445-8, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19670203

RESUMEN

A crystalline nanoporous molecular network was tailored by supramolecular assembly of pentacene and F16CuPc on Cu(100). The structure and self-assembly mechanisms of the pure and binary layers were analyzed by STM. F16CuPc films and mixed layers of pentacene/F16CuPc in a ratio of 2:1 show two enantiomorphic chiral domains with high structural order in contrast to pentacene which exhibits no long-range order in pure films. A model of the epitaxial relationship on Cu(100) is given, which suggests C-F...H bonding as a possible driving force for the bimolecular self-assembly in addition to the still strong interaction between the substrate and the organic bilayer.

20.
Phys Chem Chem Phys ; 11(39): 8741-4, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20449017

RESUMEN

The structure of monolayer films of diindenoperylene (DIP) on Cu(111) single crystals has been studied by means of scanning tunneling microscopy (STM). Pronounced film confinement effects are observed, resulting in distinctly different film structures depending upon the substrate terrace width. On wide terraces (exceeding approximately 15 nm in width) a short range ordered structure forms with the DIP molecules aligned along three discrete directions related by 60 degrees rotations. On the contrary, on narrow terraces (<15 nm), the confinement enhances the role of the step edges and leads to the formation of a long range ordered structure with co-directionally oriented molecules, tentatively ascribed to an energy minimization by optimization of the surface coverage.


Asunto(s)
Cobre/química , Indenos/química , Nanoestructuras/química , Perileno/análogos & derivados , Membranas Artificiales , Microscopía de Túnel de Rastreo , Tamaño de la Partícula , Perileno/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA