Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 879-87, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633599

RESUMEN

The 38-residue SBP-Tag binds to streptavidin more tightly (K(d) -/= 2.5-4.9 nM) than most if not all other known peptide sequences. Crystallographic analysis at 1.75 Å resolution shows that the SBP-Tag binds to streptavidin in an unprecedented manner by simultaneously interacting with biotin-binding pockets from two separate subunits. An N-terminal HVV peptide sequence (residues 12-14) and a C-terminal HPQ sequence (residues 31-33) form the bulk of the direct interactions between the SBP-Tag and the two biotin-binding pockets. Surprisingly, most of the peptide spanning these two sites (residues 17-28) adopts a regular α-helical structure that projects three leucine side chains into a groove formed at the interface between two streptavidin protomers. The crystal structure shows that residues 1-10 and 35-38 of the original SBP-Tag identified through in vitro selection and deletion analysis do not appear to contact streptavidin and thus may not be important for binding. A 25-residue peptide comprising residues 11-34 (SBP-Tag2) was synthesized and shown using surface plasmon resonance to bind streptavidin with very similar affinity and kinetics when compared with the SBP-Tag. The SBP-Tag2 was also added to the C-terminus of ß-lactamase and was shown to be just as effective as the full-length SBP-Tag in affinity purification. These results validate the molecular structure of the SBP-Tag-streptavidin complex and establish a minimal bivalent streptavidin-binding tag from which further rational design and optimization can proceed.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Marcadores de Afinidad/química , Secuencia de Aminoácidos , Sitios de Unión , Cromatografía de Afinidad , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
2.
BMC Plant Biol ; 10: 44, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20214804

RESUMEN

BACKGROUND: Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. RESULTS: The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. CONCLUSIONS: The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the amino acid variability observed within their PUM-HDs, suggests that these proteins may be involved in a wide range of post-transcriptional regulatory events that are important in providing plants with the ability to respond rapidly to changes in environmental conditions and throughout development.


Asunto(s)
Arabidopsis/genética , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Clonación Molecular , Hibridación Genómica Comparativa , Ensayo de Cambio de Movilidad Electroforética , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Oryza/metabolismo , Proteínas de Plantas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
Biochem Mol Biol Educ ; 39(4): 332-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21887891

RESUMEN

In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.


Asunto(s)
Bioquímica/educación , Concentración de Iones de Hidrógeno , Aprendizaje Basado en Problemas/métodos , Enseñanza , Ácidos/química , Álcalis/química , Tampones (Química) , Humanos , Indonesia , Estudiantes
4.
J Biol Chem ; 278(26): 24062-71, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12684499

RESUMEN

Multidomain proteinase inhibitors play critical roles in the defense of plants against predation by a wide range of pests. Despite a wealth of structural information on proteinase-single domain inhibitor interactions, the structural basis of inhibition by multidomain proteinase inhibitors remains poorly understood. Here we report the 2.5-A resolution crystal structure of the two-headed tomato inhibitor-II (TI-II) in complex with two molecules of subtilisin Carlsberg; it reveals how a multidomain inhibitor from the Potato II family of proteinase inhibitors can bind to and simultaneously inhibit two enzyme molecules within a single ternary complex. The N terminus of TI-II initiates the folding of Domain I (Lys-1 to Cys-15 and Pro-84 to Met-123) and then completes Domain II (Ile-26 to Pro-74) before coming back to complete the rest of Domain I (Pro-84 to Met-123). The two domains of TI-II adopt a similar fold and are arranged in an extended configuration that presents two reactive site loops at the opposite ends of the inhibitor molecule. Each subtilisin molecule interacts with a reactive site loop of TI-II through the standard, canonical binding mode. Remarkably, a significant distortion of the active site of subtilisin is induced by the presence of phenylalanine in the P1 position of reactive site loop II of TI-II. The structure of the TI-II.(subtilisin)2 complex provides a molecular framework for understanding how multiple inhibitory domains in a single Potato II type proteinase inhibitor molecule from the Potato II family act to inhibit proteolytic enzymes.


Asunto(s)
Complejos Multienzimáticos/química , Subtilisinas/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Subtilisinas/metabolismo
5.
J Biol Chem ; 278(33): 31391-400, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12788916

RESUMEN

The Potato II (Pot II) family of proteinase inhibitors plays important roles in the constitutive and inducible defense of plants against predation by a wide range of pests. The structural basis of inhibition by a multidomain Pot II family inhibitor was revealed recently by the structure of the ternary complex between the two-headed tomato inhibitor-II (TI-II) and two molecules of subtilisin Carlsberg. Here we report the 2.15-A resolution crystal structure of the unbound form of TI-II that reveals significant conformational flexibility in the absence of bound proteinase molecules. The four independent copies of unbound TI-II in the asymmetric unit of the unit cell display a range of different conformations when compared with the bound form of the inhibitor, most strikingly in the orientations of the inhibitory domains and in the conformations of the reactive site loops. One of the two linker segments (residues 74 to 79) between the two domains as well as the adjacent beta-strand in Domain I (residues 80-85) is well ordered in all four copies of the unbound inhibitor, even though this region appeared to be disordered in the structure of the ternary complex. Conformational flexibility seen in the reactive site loops of unbound TI-II suggests a mechanism by which the inhibitor can balance the need for tight binding with the need for broad inhibitory function.


Asunto(s)
Complejos Multienzimáticos/química , Proteínas de Plantas/química , Inhibidores de Proteasas/química , Solanum lycopersicum/enzimología , Sitios de Unión , Cristalografía por Rayos X , Solanum lycopersicum/genética , Complejos Multienzimáticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores de Proteasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
6.
J Biol Chem ; 277(42): 39960-6, 2002 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-12163505

RESUMEN

Arteriviruses are enveloped, positive-stranded RNA viruses and include pathogens of major economic concern to the swine- and horse-breeding industries. The arterivirus replicase gene encodes two large precursor polyproteins that are processed by the viral main proteinase nonstructural protein 4 (nsp4). The three-dimensional structure of the 21-kDa nsp4 from the arterivirus prototype equine arteritis virus has been determined to 2.0 A resolution. Nsp4 adopts the smallest known chymotrypsin-like fold with a canonical catalytic triad of Ser-120, His-39, and Asp-65, as well as a novel alpha/beta C-terminal extension domain that may play a role in mediating protein-protein interactions. In different copies of nsp4 in the asymmetric unit, the oxyanion hole adopts either a collapsed inactive conformation or the standard active conformation, which may be a novel way of regulating proteolytic activity.


Asunto(s)
Arterivirus/enzimología , Quimotripsina/química , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Aniones , Ácido Aspártico/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Histidina/química , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Serina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA