Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(16): 9710-9726, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39036954

RESUMEN

The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.


Asunto(s)
Complejo IV de Transporte de Electrones , Proteínas Mitocondriales , Ribosomas Mitocondriales , Péptidos , Biosíntesis de Proteínas , Humanos , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Péptidos/metabolismo , Péptidos/genética , Ribosomas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , Células HEK293 , Ciclooxigenasa 1
2.
EMBO Rep ; 24(11): e57092, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37828827

RESUMEN

The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Membranas Mitocondriales/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo
3.
Nucleic Acids Res ; 51(21): 11797-11812, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823603

RESUMEN

The human mitochondrial ribosome contains three [2Fe-2S] clusters whose assembly pathway, role, and implications for mitochondrial and metabolic diseases are unknown. Here, structure-function correlation studies show that the clusters play a structural role during mitoribosome assembly. To uncover the assembly pathway, we have examined the effect of silencing the expression of Fe-S cluster biosynthetic and delivery factors on mitoribosome stability. We find that the mitoribosome receives its [2Fe-2S] clusters from the GLRX5-BOLA3 node. Additionally, the assembly of the small subunit depends on the mitoribosome biogenesis factor METTL17, recently reported containing a [4Fe-4S] cluster, which we propose is inserted via the ISCA1-NFU1 node. Consistently, fibroblasts from subjects suffering from 'multiple mitochondrial dysfunction' syndrome due to mutations in BOLA3 or NFU1 display previously unrecognized attenuation of mitochondrial protein synthesis that contributes to their cellular and pathophysiological phenotypes. Finally, we report that, in addition to their structural role, one of the mitoribosomal [2Fe-2S] clusters and the [4Fe-4S] cluster in mitoribosome assembly factor METTL17 sense changes in the redox environment, thus providing a way to regulate organellar protein synthesis accordingly.


Asunto(s)
Proteínas Hierro-Azufre , Enfermedades Mitocondriales , Ribosomas Mitocondriales , Humanos , Proteínas Portadoras/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Azufre/metabolismo , Enfermedades Mitocondriales/metabolismo
4.
EMBO J ; 39(14): e103912, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511785

RESUMEN

Mitochondrial respiratory chain complexes I, III, and IV can associate into larger structures termed supercomplexes or respirasomes, thereby generating structural interdependences among the individual complexes yet to be understood. In patients, nonsense mutations in complex IV subunit genes cause severe encephalomyopathies randomly associated with pleiotropic complex I defects. Using complexome profiling and biochemical analyses, we have explored the structural rearrangements of the respiratory chain in human cell lines depleted of the catalytic complex IV subunit COX1 or COX2. In the absence of a functional complex IV holoenzyme, several supercomplex I+III2 species coexist, which differ in their content of COX subunits and COX7A2L/HIGD2A assembly factors. The incorporation of an atypical COX1-HIGD2A submodule attenuates supercomplex I+III2 turnover rate, indicating an unexpected molecular adaptation for supercomplexes stabilization that relies on the presence of COX1 independently of holo-complex IV formation. Our data set the basis for complex I structural dependence on complex IV, revealing the co-existence of alternative pathways for the biogenesis of "supercomplex-associated" versus individual complex IV, which could determine physiological adaptations under different stress and disease scenarios.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Línea Celular , Humanos
5.
Brain ; 146(10): 4191-4199, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37170631

RESUMEN

COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Mutación/genética , Ubiquinona/genética
6.
Hum Mol Genet ; 30(8): 672-686, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33749726

RESUMEN

Human neurodegenerative proteinopathies are disorders associated with abnormal protein depositions in brain neurons. They include polyglutamine (polyQ) conditions such as Huntington's disease (HD) and α-synucleinopathies such as Parkinson's disease (PD). Overexpression of NMNAT/Nma1, an enzyme in the NAD+ biosynthetic salvage pathway, acts as an efficient suppressor of proteotoxicities in yeast, fly and mouse models. Screens in yeast models of HD and PD allowed us to identify three additional enzymes of the same pathway that achieve similar protection against proteotoxic stress: Npt1, Pnc1 and Qns1. The mechanism by which these proteins maintain proteostasis has not been identified. Here, we report that their ability to maintain proteostasis in yeast models of HD and PD is independent of their catalytic activity and does not require cellular protein quality control systems such as the proteasome or autophagy. Furthermore, we show that, under proteotoxic stress, the four proteins are recruited as molecular chaperones with holdase and foldase activities. The NAD+ salvage proteins act by preventing misfolding and, together with the Hsp90 chaperone, promoting the refolding of extended polyQ domains and α-synuclein (α-Syn). Our results illustrate the existence of an evolutionarily conserved strategy of repurposing or moonlighting housekeeping enzymes under stress conditions to maintain proteostasis. We conclude that the entire salvage NAD+ biosynthetic pathway links NAD+ metabolism and proteostasis and emerges as a target for therapeutics to combat age-associated neurodegenerative proteotoxicities.


Asunto(s)
Vías Biosintéticas/genética , Chaperonas Moleculares/genética , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Proteostasis/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Chaperonas Moleculares/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Péptidos/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Repeticiones de Trinucleótidos/genética
7.
Yeast ; 39(3): 208-229, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34713496

RESUMEN

In Saccharomyces cerevisiae, mitoribosomes are composed of a 54S large subunit (mtLSU) and a 37S small subunit (mtSSU). The two subunits altogether contain 73 mitoribosome proteins (MRPs) and two ribosomal RNAs (rRNAs). Although mitoribosomes preserve some similarities with their bacterial counterparts, they have significantly diverged by acquiring new proteins, protein extensions, and new RNA segments, adapting the mitoribosome to the synthesis of highly hydrophobic membrane proteins. In this study, we investigated the functional relevance of mitochondria-specific protein extensions at the C-terminus (C) or N-terminus (N) present in 19 proteins of the mtLSU. The studied mitochondria-specific extensions consist of long tails and loops extending from globular domains that mainly interact with mitochondria-specific proteins and 21S rRNA moieties extensions. The expression of variants devoid of extensions in uL4 (C), uL5 (N), uL13 (N), uL13 (C), uL16 (C), bL17 (N), bL17 (C), bL21 (24), uL22 (N), uL23 (N), uL23 (C), uL24 (C), bL27 (C), bL28 (N), bL28 (C), uL29 (N), uL29 (C), uL30 (C), bL31 (C), and bL32 (C) did not rescue the mitochondrial protein synthesis capacities and respiratory growth of the respective null mutants. On the contrary, the truncated form of the mitoribosome exit tunnel protein uL24 (N) yields a partially functional mitoribosome. Also, the removal of mitochondria-specific sequences from uL1 (N), uL3 (N), uL16 (N), bL9 (N), bL19 (C), uL29 (C), and bL31 (N) did not affect the mitoribosome function and respiratory growth. The collection of mutants described here provides new means to study and evaluate defective assembly modules in the mitoribosome biogenesis process.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
EMBO Rep ; 21(12): e51015, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33016568

RESUMEN

Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.


Asunto(s)
Citocromos c , Proteínas de Saccharomyces cerevisiae , Citocromos c/genética , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nucleic Acids Res ; 48(14): 7924-7943, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32652011

RESUMEN

Biogenesis of mammalian mitochondrial ribosomes (mitoribosomes) involves several conserved small GTPases. Here, we report that the Obg family protein GTPBP5 or MTG2 is a mitochondrial protein whose absence in a TALEN-induced HEK293T knockout (KO) cell line leads to severely decreased levels of the 55S monosome and attenuated mitochondrial protein synthesis. We show that a fraction of GTPBP5 co-sediments with the large mitoribosome subunit (mtLSU), and crosslinks specifically with the 16S rRNA, and several mtLSU proteins and assembly factors. Notably, the latter group includes MTERF4, involved in monosome assembly, and MRM2, the methyltransferase that catalyzes the modification of the 16S mt-rRNA A-loop U1369 residue. The GTPBP5 interaction with MRM2 was also detected using the proximity-dependent biotinylation (BioID) assay. In GTPBP5-KO mitochondria, the mtLSU lacks bL36m, accumulates an excess of the assembly factors MTG1, GTPBP10, MALSU1 and MTERF4, and contains hypomethylated 16S rRNA. We propose that GTPBP5 primarily fuels proper mtLSU maturation by securing efficient methylation of two 16S rRNA residues, and ultimately serves to coordinate subunit joining through the release of late-stage mtLSU assembly factors. In this way, GTPBP5 provides an ultimate quality control checkpoint function during mtLSU assembly that minimizes premature subunit joining to ensure the assembly of the mature 55S monosome.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/enzimología , Línea Celular , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Ribosomas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Fosforilación Oxidativa , Biosíntesis de Proteínas , ARN Ribosómico 16S/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Factores de Transcripción/metabolismo
11.
Nucleic Acids Res ; 47(11): 5746-5760, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30968120

RESUMEN

Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Arabidopsis/metabolismo , ADN Mitocondrial/metabolismo , Humanos , Kluyveromyces/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Oryza/metabolismo , Fosforilación Oxidativa , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismo
12.
Semin Cell Dev Biol ; 76: 163-178, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870773

RESUMEN

Mitochondrial cytochrome c oxidase (COX) is the primary site of cellular oxygen consumption and is essential for aerobic energy generation in the form of ATP. Human COX is a copper-heme A hetero-multimeric complex formed by 3 catalytic core subunits encoded in the mitochondrial DNA and 11 subunits encoded in the nuclear genome. Investigations over the last 50 years have progressively shed light into the sophistication surrounding COX biogenesis and the regulation of this process, disclosing multiple assembly factors, several redox-regulated processes leading to metal co-factor insertion, regulatory mechanisms to couple synthesis of COX subunits to COX assembly, and the incorporation of COX into respiratory supercomplexes. Here, we will critically summarize recent progress and controversies in several key aspects of COX biogenesis: linear versus modular assembly, the coupling of mitochondrial translation to COX assembly and COX assembly into respiratory supercomplexes.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Humanos
13.
Nucleic Acids Res ; 46(16): 8435-8453, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30085276

RESUMEN

Mammalian mitochondrial ribosomes (mitoribosomes) synthesize 13 proteins, essential components of the oxidative phosphorylation system. They are linked to mitochondrial disorders, often involving cardiomyopathy. Mitoribosome biogenesis is assisted by multiple cofactors whose specific functions remain largely uncharacterized. Here, we examined the role of human MTG1, a conserved ribosome assembly guanosine triphosphatase. MTG1-silencing in human cardiomyocytes and developing zebrafish revealed early cardiovascular lesions. A combination of gene-editing and biochemical approaches using HEK293T cells demonstrated that MTG1 binds to the large subunit (mtLSU) 16S ribosomal RNA to facilitate incorporation of late-assembly proteins. Furthermore, MTG1 interacts with mtLSU uL19 protein and mtSSU mS27, a putative guanosine triphosphate-exchange factor (GEF), to enable MTG1 release and the formation of the mB6 intersubunit bridge. In this way, MTG1 establishes a quality control checkpoint in mitoribosome assembly. In conclusion, MTG1 controls mitochondrial translation by coupling mtLSU assembly with intersubunit bridge formation using the intrinsic GEF activity acquired by the mtSSU through mS27, a unique occurrence in translational systems.


Asunto(s)
GTP Fosfohidrolasas/genética , Metaloproteínas/genética , Mitocondrias/genética , Ribosomas Mitocondriales/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , GTP Fosfohidrolasas/biosíntesis , Silenciador del Gen , Células HEK293 , Humanos , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación Oxidativa , ARN Ribosómico 16S/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
14.
Nucleic Acids Res ; 46(21): 11423-11437, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30321378

RESUMEN

Most steps on the biogenesis of the mitochondrial ribosome (mitoribosome) occur near the mitochondrial DNA nucleoid, in RNA granules, which contain dedicated RNA metabolism and mitoribosome assembly factors. Here, analysis of the RNA granule proteome identified the presence of a set of small GTPases that belong to conserved families of ribosome assembly factors. We show that GTPBP10, a member of the conserved Obg family of P-loop small G proteins, is a mitochondrial protein and have used gene-editing technologies to create a HEK293T cell line KO for GTPBP10. The absence of GTPBP10 leads to attenuated mtLSU and mtSSU levels and the virtual absence of the 55S monosome, which entirely prevents mitochondrial protein synthesis. We show that a fraction of GTPBP10 cosediments with the large mitoribosome subunit and the monosome. GTPBP10 physically interacts with the 16S rRNA, but not with the 12S rRNA, and crosslinks with several mtLSU proteins. Additionally, GTPBP10 is indirectly required for efficient processing of the 12S-16S rRNA precursor transcript, which could explain the mtSSU accumulation defect. We propose that GTPBP10 primarily ensures proper mtLSU maturation and ultimately serves to coordinate mtSSU and mtLSU accumulation then providing a quality control check-point function during mtLSU assembly that minimizes premature subunit joining.


Asunto(s)
Ribosomas Mitocondriales/química , Proteínas de Unión al GTP Monoméricas/fisiología , ARN Helicasas DEAD-box/metabolismo , ADN Mitocondrial/genética , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Biosíntesis de Proteínas , Proteoma , ARN/química , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , Transgenes
15.
EMBO Rep ; 18(3): 477-494, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082314

RESUMEN

Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN-mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1-COA3-COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/deficiencia , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Biosíntesis de Proteínas , Alelos , Ciclooxigenasa 1/metabolismo , Estabilidad de Enzimas , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
16.
Nucleic Acids Res ; 45(11): 6628-6643, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28520979

RESUMEN

Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Ribosomas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Secuencia de Bases , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , ADN de Hongos/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Iniciación de la Cadena Peptídica Traduccional , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Semin Cancer Biol ; 47: 67-81, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28445780

RESUMEN

Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer.


Asunto(s)
Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Neoplasias/metabolismo , Animales , Apoptosis , Biomarcadores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos
18.
J Biol Chem ; 292(19): 7774-7783, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28330871

RESUMEN

Defects in mitochondrial cytochrome c oxidase or respiratory chain complex IV (CIV) assembly are a frequent cause of human mitochondrial disorders. Specifically, mutations in four conserved assembly factors impinging the biogenesis of the mitochondrion-encoded catalytic core subunit 2 (COX2) result in myopathies. These factors afford stability of newly synthesized COX2 (the dystonia-ataxia syndrome protein COX20), a protein with two transmembrane domains, and maturation of its copper center, CuA (cardiomyopathy proteins SCO1, SCO2, and COA6). COX18 is an additional COX2 assembly factor that belongs to the Oxa1 family of membrane protein insertases. Here, we used a gene-editing approach to generate a human COX18 knock-out HEK293T cell line that displays isolated complete CIV deficiency. We demonstrate that COX20 stabilizes COX2 during insertion of its N-proximal transmembrane domain, and subsequently, COX18 transiently interacts with COX2 to promote translocation across the inner membrane of the COX2 C-tail that contains the apo-CuA site. The release of COX18 from this complex coincides with the binding of the SCO1-SCO2-COA6 copper metallation module to COX2-COX20 to finalize COX2 biogenesis. Therefore, COX18 is a new candidate when screening for mitochondrial disorders associated with isolated CIV deficiency.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Cardiomiopatías/metabolismo , Proteínas Portadoras/metabolismo , Dominio Catalítico , Línea Celular , Membrana Celular/metabolismo , Citrato (si)-Sintasa/metabolismo , Cobre/química , Ciclooxigenasa 2/metabolismo , Endopeptidasa K/metabolismo , Edición Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunohistoquímica , Mitocondrias/metabolismo , Chaperonas Moleculares , Enfermedades Musculares/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Plásmidos/metabolismo , Transporte de Proteínas
19.
Cell Biol Int ; 42(6): 630-642, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29160602

RESUMEN

Saccharomyces cerevisiae mitoribosomes are specialized in the translation of a few number of highly hydrophobic membrane proteins, components of the oxidative phosphorylation system. Mitochondrial characteristics, such as the membrane system and its redox state driven mitoribosomes evolution through great diversion from their bacterial and cytosolic counterparts. Therefore, mitoribosome presents a considerable number of mitochondrial-specific proteins, as well as new protein extensions. In this work we characterize temperature sensitive mutants of the subunit bL34 present in the 54S large subunit. Although bL34 has bacterial homologs, in yeast it has a long 65 aminoacids mitochondrial N-terminal addressing sequence, here we demonstrate that it can be replaced by the mitochondrial addressing sequence of Neurospora crassa ATP9 gene. The bL34 temperature sensitive mutants present lowered translation of mitochondrial COX1 and COX3, which resulted in reduced cytochrome c oxidase activity and respiratory growth deficiency. The sedimentation properties of bL34 in sucrose gradients suggest that similarly to its bacterial homolog, bL34 is also a later participant in the process of mitoribosome biogenesis.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Biosíntesis de Proteínas , Proteínas RGS/genética , Proteínas RGS/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
20.
Nucleic Acids Res ; 43(17): 8368-80, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26240381

RESUMEN

To gain a wider view of the pathways that regulate mitochondrial function, we combined the effect of heat stress on respiratory capacity with the discovery potential of a genome-wide screen in Saccharomyces cerevisiae. We identified 105 new genes whose deletion impairs respiratory growth at 37°C by interfering with processes such as transcriptional regulation, ubiquitination and cytosolic tRNA wobble uridine modification via 5-methoxycarbonylmethyl-2-thiouridine formation. The latter process, specifically required for efficient decoding of AA-ending codons under stress conditions, was covered by multiple genes belonging to the Elongator (e.g. ELP3) and urmylation (e.g., NCS6) pathways. ELP3 or NCS6 deletants had impaired mitochondrial protein synthesis. Their respiratory deficiency was selectively rescued by overexpression of tRNA(Lys) UUU as well by overexpression of genes (BCK1 and HFM1) with a strong bias for the AAA codon read by this tRNA. These data extend the mitochondrial regulome, demonstrate that heat stress can impair respiration by disturbing cytoplasmic translation of proteins critically involved in mitochondrial function and document, for the first time, the involvement in such process of the Elongator and urmylation pathways. Given the conservation of these pathways, the present findings may pave the way to a better understanding of the human mitochondrial regulome in health and disease.


Asunto(s)
Histona Acetiltransferasas/genética , Mitocondrias/metabolismo , ARN de Transferencia de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Respiración de la Célula , Codón , Citocromos/química , Citoplasma/metabolismo , Eliminación de Gen , Genoma Fúngico , Calor , Mitocondrias/genética , Mutación , Fosforilación Oxidativa , Fenotipo , ARN de Transferencia de Lisina/química , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA