Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Angew Chem Int Ed Engl ; 61(3): e202110310, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34757659

RESUMEN

Spin-crossover between high-spin (HS) and low-spin (LS) states of selected transition metal ions in polynuclear and polymeric compounds is behind their use as multistep switchable materials in breakthrough electronic and spintronic devices. We report the first successful attempt to observe the dynamics of a rarely found broken-symmetry spin state in binuclear complexes, which mixes the states [HS-LS] and [LS-HS] on a millisecond timescale. The slow exchange between these two states, which was identified by paramagnetic NMR spectroscopy in solutions of two spin-crossover iron(II) binuclear helicates that are amenable to molecular design, opens a path to double quantum dot cellular automata for information storage and processing.

2.
Inorg Chem ; 60(11): 7974-7990, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979132

RESUMEN

We have recently reported a series of piano-stool ruthenium(II) complexes of the general formula [RuCl2(η6-arene)(P(1-pyrenyl)R2R3)] showing excellent cytotoxic activities (particularly when R2 = R3 = methyl). In the present study, new members of this family of compounds have been prepared with the objective to investigate the effect of the steric hindrance of a bulky phosphane ligand, namely diisopropyl(1-pyrenyl)phosphane (L), on exchange reactions involving the coordinated halides (X = Cl, I). Two η6-arene rings were used, i.e. η6-methyl benzoate (mba) and η6-p-cymene (p-cym), and four complexes were synthesized, namely [RuCl2(mba)(L)] (1Cl2iPr), [RuI2(mba)(L)] (1I2iPr), [RuCl2(p-cym)(L)] (2Cl2iPr), and [RuI2(p-cym)(L)] (2I2iPr). Unexpectedly, all of the complexes exhibited poor cytotoxic activities after 24 h of incubation with cells, in contrast to the related compounds previously reported. However, it was observed that aged DMSO solutions of 2I2iPr (from 2 to 7 days) exhibited better activities in comparison to freshly prepared solutions and that the activity improved over "aging" time. Thorough studies were therefore performed to uncover the origin of this lag time in the cytotoxicity efficiency. The data achieved clearly demonstrated that compounds 2I2iPr and 2Cl2iPr were undergoing a series of transformation reactions in DMSO (with higher rates for the iodido complex 2I2iPr), ultimately generating cyclometalated species through a mechanism involving DMSO as a coordinated proton abstractor. The cyclometalated complexes detected in solution were subsequently prepared; hence, pure [RuCl(p-cym)(κ2C-diisopropyl(1-pyrenyl)phosphane)] (3CliPr), [RuI(p-cym)(κ2C-diisopropyl(1-pyrenyl)phosphane)] (3IiPr), and [Ru(p-cym)(κS-dmso)(κ2C-diisopropyl(1-pyrenyl)phosphane)]PF6 (3dmsoiPr) were synthesized and fully characterized. Remarkably, 3CliPr, 3IiPr, and 3dmsoiPr are all very efficient cytotoxic agents, exhibiting slightly better activities in comparison to the chlorido noncyclometalated complexes [RuCl2(η6-arene)(P(1-pyrenyl)R2R3)] described in an earlier report. For comparison purposes, the iodido compounds [RuI2(mba)(dimethyl(1-pyrenyl)phosphane)] (1I2Me) and [RuI2(p-cym)(dimethyl(1-pyrenyl)phosphane)] (2I2Me), bearing the less hindered dimethyl(1-pyrenyl)phosphane ligand, have also been prepared. The cytotoxic and chemical behaviors of 1I2Me and 1I2Me were comparable to those of their chlorido counterparts reported previously.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Rutenio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Conformación Molecular , Rutenio/química , Factores de Tiempo , Células Tumorales Cultivadas
3.
Chemistry ; 25(67): 15228-15232, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31506989

RESUMEN

The combination of two different ß-diketone ligands facilitates the size-controlled assembly of pure heterometallic [LnLn'Ln] linear compounds thanks to two different coordination sites present in the molecular scaffold. [HoCeHo], [ErCeEr], and [YbCeYb] analogues are presented here and are characterized both in the solid state and in solution, demonstrating the selectivity of this unique method to produce heterometallic 4f molecular entities.

4.
Chemistry ; 24(20): 5153-5162, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29194825

RESUMEN

The binding and electrochemical properties of the complexes CuII -HAH, CuII -HWH, CuII -Ac-HWH, CuII -HHW, and CuII -WHH have been studied by using NMR and UV/Vis spectroscopies, CV, and density functional calculations. The results obtained highlight the importance of the peptidic sequence on the coordination properties and, consequently, on the redox properties of their CuII complexes. For CuII -HAH and CuII -HWH, no cathodic processes are observed up to -1.2 V; that is, the complexes exhibit very high stability towards copper reduction. This behaviour is associated with the formation of very stable square-planar (5,5,6)-membered chelate rings (ATCUN motif), which enclose two deprotonated amides. In contrast, for non-ATCUN CuII -Ac-HWH, CuII -HHW complexes, simulations seem to indicate that only one deprotonated amide is enclosed in the coordination sphere. In these cases, the main electrochemical feature is a reductive irreversible one electron-transfer process from CuII to CuI , accompanied with structural changes of the metal coordination sphere and reprotonation of the amide. Finally, for CuII -WHH, two major species have been detected: one at low pH (<5), with no deprotonated amides, and another one at high pH (>10) with an ATCUN motif, both species coexisting at intermediate pH. The present study shows that the use of CV, using glassy carbon as a working electrode, is an ideal and rapid tool for the determination of the redox properties of CuII metallopeptides.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Técnicas Electroquímicas/métodos , Péptidos/química , Amidas/química , Secuencia de Aminoácidos , Sitios de Unión , Quelantes/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica
5.
Inorg Chem ; 57(7): 4009-4022, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29543468

RESUMEN

The development of photoactivatable metal complexes with potential anticancer properties is a topical area of current investigation. Photoactivated chemotherapy using coordination compounds is typically based on photochemical processes occurring at the metal center. In the present study, an innovative approach is applied that takes advantage of the remarkable photochemical properties of diarylethenes. Following a proof-of-concept study with two complexes, namely, C1 and C2, a series of additional platinum(II) complexes from dithienylcyclopentene-based ligands was designed and prepared. Like C1 and C2, these new coordination compounds exhibit two thermally stable, interconvertible photoisomers that display distinct properties. The photochemical behavior of ligands L3-L7 has been analyzed by 1H NMR and UV-vis spectroscopies. Subsequently, the corresponding platinum(II) complexes C3-C7 were synthesized and fully characterized, including by single-crystal X-ray diffraction for some of them. Next, the interaction of each photoisomer (i.e., containing the open or closed ligand) of the metal complexes with DNA was examined thoroughly using various techniques, revealing their distinct DNA-binding modes and affinities, as observed for the earlier compounds C1 and C2. The antiproliferative activity of the two forms of the complexes was then assessed with five cancer cell lines and compared with that of C1 and C2, which supported the use of such diarylethene-based systems for the generation of a new class of potential photochemotherapeutic metallodrugs.


Asunto(s)
Complejos de Coordinación/farmacología , ADN Superhelicoidal/química , Compuestos Organoplatinos/farmacología , Platino (Metal)/química , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/efectos de la radiación , Ciclización , Fluorescencia , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/efectos de la radiación , Isomerismo , Ligandos , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/efectos de la radiación
6.
Inorg Chem ; 57(14): 8429-8439, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29969253

RESUMEN

The preparation of heterometallic, lanthanide-only complexes is an extremely difficult synthetic challenge. By a ligand-based strategy, a complete isostructural series of dinuclear heterometallic [LnPr] complexes has been synthesized and structurally characterized. The two different coordination sites featured in this molecular entity allow study of the preferences of the praseodymium ion for a specific position depending on the ionic radii of the accompanying lanthanide partner. The purity of each heterometallic moiety has been evaluated in the solid state and in solution by means of crystallographic and spectrometric methods, respectively, revealing the limits of this strategy for ions with similar sizes. DFT calculations have been carried out to support the experimental results, confirming the nature of the site-selective lanthanide distribution. The predictable selectivity of this system has been exploited to assess the magnetic properties of the [DyPr] and [LuPr] derivatives, showing that the origin of the slow dynamics observed in the former arises from the dysprosium ion.

7.
Inorg Chem ; 57(23): 14786-14797, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30444630

RESUMEN

In the present study, the potential anti-neoplastic properties of a series of ruthenium half-sandwich complexes of formula [Ru(η6-arene)Cl2(PR1R2(1-pyrenyl))] (η6-arene = p-cymene and R1 = R2 = methyl for 1; η6-arene = methylbenzoate and R1 = R2 = methyl for 2; η6-arene = p-cymene and R1 = R2 = phenyl for 3; η6-arene = methylbenzoate and R1 = R2 = phenyl for 4; η6-arene = p-cymene, R1 = methyl and R2 = phenyl for 5; η6-arene = methylbenzoate, R1 = methyl and R2 = phenyl for 6) have been investigated. The six structurally related organoruthenium(II) compounds have been prepared in good yields and fully characterized; the X-ray structures of three of them, i.e., 1, 2, and 4, were determined. Although the piano-stool compounds contain a large polycyclic aromatic moiety, viz. a 1-pyrenyl group, they do not appear to interact with DNA. However, all the piano-stool complexes show significant cytotoxic properties against five human cell lines, namely, lung adenocarcinoma (A549), melanoma (A375), colorectal adenocarcinoma (SW620), breast adenocarcinoma (MCF7), and nontumorigenic epithelial breast (MCF10A), with IC50 values in the micromolar range for most of them. In addition, the most active compound, i.e., 2, induces a remarkable decrease of cell viability, that is in the nanomolar range, against two human neuroblastoma cell lines, namely, SK-N-BE(2) and CHLA-90. Complexes 1-6 are all capable of inducing apoptosis, but with various degrees of magnitude. Whereas 1, 3, 5, and 6 have no effect on the cell cycle of A375 cells, 2 and 4 can arrest it at the G2/M phase; furthermore, 2 (which is the most efficient compound of the series) also stops the cycle at the S phase, behaving as the well-known anticancer agent cisplatin. Finally, 2 is able to inhibit/reduce the cell migration of neuroblastoma SK-N-BE(2) cells.


Asunto(s)
Antineoplásicos/farmacología , Benzoatos/farmacología , Complejos de Coordinación/farmacología , Monoterpenos/farmacología , Neuroblastoma/patología , Rutenio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzoatos/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Cimenos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Monoterpenos/química , Rutenio/química
8.
Angew Chem Int Ed Engl ; 57(41): 13509-13513, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30161280

RESUMEN

Single functional molecules are regarded as future components of nanoscale spintronic devices. Supramolecular coordination chemistry provides unlimited resources to implement multiple functions to individual molecules. A novel coordination [Fe2 ] helicate exhibiting spin-crossover is demonstrated to be ideally suited to encapsulate a [Cr(ox)3 ]3- complex anion (ox=oxalate), unveiling for the first-time single ion slow relaxation of the magnetization for this metal. A possibility of tuning the dynamics of this relaxation as well as the performance of the CrIII center as qubit arises from the observation that metastable high spin FeII centers from the host can be generated by irradiation with green light at low temperature.

9.
Chemistry ; 23(21): 5117-5125, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28220975

RESUMEN

The solid-state and solution configurations of the heterodimetallic complexes (Hpy)[LaEr(HL)3 (NO3 )(py)(H2 O)] (1), (Hpy)[CeEr(HL)3 (NO3 )(py)(H2 O)] (2), (Hpy)[CeGd(HL)3 (NO3 )(py)(H2 O)] (3), (Hpy)[PrSm(HL)3 (NO3 )(py)(H2 O)] (4), and (Hpy)2 [LaYb(HL)3 (NO3 )(H2 O)](NO3 ) (5), in which H3 L is 6-(3-oxo-3-(2-hydroxyphenyl)propionyl)pyridine-2-carboxylic acid and py is pyridine, were analyzed experimentally and by using DFT calculations. Complexes 3, 4, and 5 are described here for the first time, and were analyzed by using single-crystal X-ray diffraction and mass spectrometry. The theoretical study was also extended to the [LaCe] and [LaLu] analogues. The results are consistent with a remarkable selectivity of the metal distribution within the molecule in the solid state, enhanced by the size difference between the different ions. This selectivity was reduced in solution, particularly for ions with the most similar radii. This unique entry into 4f-4f'' heterometallic chemistry establishes for the first time the difference between the selectivity in solution and that in the solid state, as a result of changes to the coordination that follow the dissociation of terminal ligands upon dissolution of the complexes.

10.
Angew Chem Int Ed Engl ; 56(49): 15622-15627, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29057559

RESUMEN

A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2 L3 ]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2 L3 ](ClO4 )4 (1) preserves the magnetic properties and is fluorescent. The structure of 1 is photo-switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.

11.
Chemistry ; 22(25): 8635-45, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27161198

RESUMEN

A new bis(pyrazolylpyridine) ligand (H2 L) has been prepared to form functional [Fe2 (H2 L)3 ](4+) metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2 (H2 L)3 ]X(PF6 )2 ⋅xCH3 OH (1, x=5.7 and X=Cl; 2, x=4 and X=Br), X@[Fe2 (H2 L)3 ]X(PF6 )2 ⋅yCH3 OH⋅H2 O (1 a, y=3 and X=Cl; 2 a, y=1 and X=Br) and X@[Fe2 (H2 L)3 ](I3 )2 ⋅3 Et2 O (1 b, X=Cl; 2 b, X=Br). Their structure and functional properties are described in detail by single-crystal X-ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2, respectively, by a single-crystal-to-single-crystal mechanism. The three possible magnetic states, [LS-LS], [LS-HS], and [HS-HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the Fe(II) centers. The nature of the guest (Cl(-) vs. Br(-) ) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS-HS] or [HS-HS] states are generated through irradiation. All helicates (X@[Fe2 (H2 L)3 ])(3+) persist in solution.

12.
Inorg Chem ; 55(9): 4110-6, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27074060

RESUMEN

We show a marked tendency of Fe(II) to form heteroleptic [Fe(L)(L')](ClO4)2 complexes from pairs of chelating tris-imine 3bpp, tpy, or 2bbp ligands. New synthetic avenues for spin crossover research become thus available, here illustrated with three new heteroleptic compounds with differing magnetic behaviors: [Fe(H4L1)(Cl-tpy)](ClO4)2·C3H6O (1), [Fe(H2L3)(Me3bpp)](ClO4)2·C3H6O (2), [Fe(H4L1)(2bbp)](ClO4)2·3C3H6O (3). Structural studies demonstrate that 1 is in the low-spin (LS) state up to 350 K, while complexes 2 and 3 are, by contrast, in the high-spin (HS) state down to 2 K, as corroborated through magnetic susceptibility measurements. Upon exposure to the atmosphere, the latter exhibits the release of three molecules of acetone per complex, turning into the solvent-free analogue [Fe(H4L1)(2bbp)](ClO4)2 (3a), through a single-crystal-to-single-crystal transformation. This guest extrusion process is accompanied by a spin switch, from HS to LS.

13.
J Am Chem Soc ; 136(40): 14215-22, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25203521

RESUMEN

A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn'] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing.

14.
Dalton Trans ; 53(17): 7611-7618, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38618945

RESUMEN

Coordination supramolecular chemistry provides a versatile entry into materials with functionalities of technological relevance at the nanoscale. Here, we describe how two different bis-pyrazolylpyridine ligands (L1 and L2) assemble with Co(II) ions into dinuclear triple-stranded helicates, in turn, encapsulating different anionic guests. These constructs are described as (Cl@[Co2(L1)3])3+, (SiF6@[Co2(L1)(L2)3])2+ and (ClO4@[Co2(L2)3])3+, as established by single-crystal X-ray diffraction. Extensive magnetic and calorimetric measurements, numerical treatments and theoretical calculations reveal that the individual Co(II) centers of these supramolecular entities exhibit field-induced slow relaxation of magnetization, dominated by direct and Raman mechanisms. While the small variations in the spin dynamics are not easily correlated with the evident structural differences among the three species, the specific heat measurements suggest two vibronic pathways of magnetic relaxation: one that would be associated with the host lattice and another linked with the guest.

15.
Dalton Trans ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984518

RESUMEN

Two new paramagnetic supramolecular helicates with the formula (X@[Ni2L3])3+ (X = Cl, or Br; L = a bis-pyrazolylpyridine ligand) have been prepared and are described. Helicates of this metal are very rare with virtually no prior examples of them acting as hosts of anionic species. The persistence of the new assemblies in solution has been demonstrated unambiguously by mass spectrometry and paramagnetic 1H NMR. This has allowed us to establish the preference of the coordination [Ni2] host for Cl- over Br-, in agreement with DFT calculations. These results show the promise of the use of metallohelicates as suitable systems for the selective encapsulation of specific anions in solution.

16.
Chem Sci ; 15(24): 9047-9053, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903210

RESUMEN

Ditopic bis-pyrazolylpyridine ligands usually react with divalent metal ions (M2+) to produce dinuclear triple-stranded helicates [M2L3]4+ or, via π⋯π interactions, dimers of monoatomic complexes ([ML3]2)4+. The introduction of an additional benzene ring at each end of ligand L increases the number of aromatic contacts within the supramolecular aggregate by 40%, driving the self-recognition process in an irreversible manner. Consequently, the mixing of new bis-pyrazolylquinoline L2 with FeX2 salts leads to crystallization of the tripartite high-spin assemblies (X@[Fe(L2)3]2)3+ (X = Cl, Br or I). The aggregates exhibit exceptional stability, as confirmed by a combination of paramagnetic 1H NMR techniques, demonstrating their persistence in solution. Our investigations further reveal that the guests Br- and I- are retained inside the associate in solution but Cl- is immediately released, resulting in the formation of the empty supramolecular dimer ([Fe(L2)3]2)4+.

17.
Chemistry ; 19(19): 5881-91, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23495070

RESUMEN

A complete isostructural series of dinuclear asymmetric lanthanide complexes has been synthesized by using the ligand 6-[3-oxo-3-(2-hydroxyphenyl)propionyl]pyridine-2-carboxylic acid (H3L). All complexes have the formula [Ln2(HL)2(H2L)(NO3)(py)(H2O)] (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14), Y (15); py = pyridine). Complexes of La to Yb and Y have been crystallographically characterized to reveal that the two metal ions are encapsulated within two distinct coordination environments of differing size. Whereas one site maintains the coordination number (nine) through the whole series, the other one increases from nine to ten owing to a change in the coordination mode of an NO3(-) ligand. This series offers a unique opportunity to study in detail the lanthanide contraction within complexes of more than one metal. This analysis shows that various representative parameters proportional to this contraction follow a quadratic decay as a function of the number n of f electrons. Slater's model for the atomic radii has been used to extract, from these decays, the shielding constant of 4f electrons. The average of O⋅⋅⋅O distances within the coordination polyhedra shared by both metals and of the Ln⋅⋅⋅Ln separations follow also a quadratic decay, therefore showing that such dependence holds also for parameters that receive the contribution of two lanthanide ions simultaneously. The magnetic behavior has been studied for all nondiamagnetic complexes. It reveals the effect of the spin-orbit coupling and a weak antiferromagnetic interaction between both metals. Photoluminescent studies of all the complexes in the series reveal a single broad emission band in the visible region, which is related to the coordinated ligand. On the other hand, the Nd, Er, and Yb complexes show features in the near-IR region due to metal-based transitions.

18.
Chem Commun (Camb) ; 59(71): 10628-10631, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37578490

RESUMEN

A biphenyl-spaced bis-pyrazolylpyridine ligand interacts with ferrous ions to engender a dimetallic helical coordination cage that encapsulates an Fe3+ tris-anilate complex. The host-guest interaction breaks the symmetry of the Fe2+ centers causing a differential spin crossover behavior in them that can be followed in great detail crystallographically.

19.
Chem Commun (Camb) ; 58(35): 5375-5378, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35411892

RESUMEN

A designed dimetallic Fe(II) helicate made with biphenylene-bridged bispyrazolylpyridine ligands and exhibiting a process of spin crossover at temperatures above ambient is shown to encapsulate an S = 5/2 tris-oxalato Fe(III) ion. The spin relaxation dynamics of this guest are strongly reduced upon encapsulation.

20.
Chem Commun (Camb) ; 58(78): 10969-10972, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36089837

RESUMEN

The anion SiF62- exerts a strong template effect, driving the exclusive assembly of two different bispyridylpyrazolyl ligands into a triple stranded Fe(II) dinuclear heteroleptic helicate, engendering a new class within the large family of coordination helicates.


Asunto(s)
Compuestos Ferrosos , Aniones , Ligandos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA