Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(8): 102214, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779633

RESUMEN

Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.


Asunto(s)
Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
IUBMB Life ; 75(12): 972-982, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470229

RESUMEN

The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.


Asunto(s)
ADN Mitocondrial , Saccharomyces cerevisiae , ADN Mitocondrial/genética , Saccharomyces cerevisiae/genética , Biolística/métodos , Transformación Genética , Mitocondrias/genética
3.
Yeast ; 39(3): 208-229, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34713496

RESUMEN

In Saccharomyces cerevisiae, mitoribosomes are composed of a 54S large subunit (mtLSU) and a 37S small subunit (mtSSU). The two subunits altogether contain 73 mitoribosome proteins (MRPs) and two ribosomal RNAs (rRNAs). Although mitoribosomes preserve some similarities with their bacterial counterparts, they have significantly diverged by acquiring new proteins, protein extensions, and new RNA segments, adapting the mitoribosome to the synthesis of highly hydrophobic membrane proteins. In this study, we investigated the functional relevance of mitochondria-specific protein extensions at the C-terminus (C) or N-terminus (N) present in 19 proteins of the mtLSU. The studied mitochondria-specific extensions consist of long tails and loops extending from globular domains that mainly interact with mitochondria-specific proteins and 21S rRNA moieties extensions. The expression of variants devoid of extensions in uL4 (C), uL5 (N), uL13 (N), uL13 (C), uL16 (C), bL17 (N), bL17 (C), bL21 (24), uL22 (N), uL23 (N), uL23 (C), uL24 (C), bL27 (C), bL28 (N), bL28 (C), uL29 (N), uL29 (C), uL30 (C), bL31 (C), and bL32 (C) did not rescue the mitochondrial protein synthesis capacities and respiratory growth of the respective null mutants. On the contrary, the truncated form of the mitoribosome exit tunnel protein uL24 (N) yields a partially functional mitoribosome. Also, the removal of mitochondria-specific sequences from uL1 (N), uL3 (N), uL16 (N), bL9 (N), bL19 (C), uL29 (C), and bL31 (N) did not affect the mitoribosome function and respiratory growth. The collection of mutants described here provides new means to study and evaluate defective assembly modules in the mitoribosome biogenesis process.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 48(12): 6759-6774, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32449921

RESUMEN

Mitoribosome biogenesis is an expensive metabolic process that is essential to maintain cellular respiratory capacity and requires the stoichiometric accumulation of rRNAs and proteins encoded in two distinct genomes. In yeast, the ribosomal protein Var1, alias uS3m, is mitochondrion-encoded. uS3m is a protein universally present in all ribosomes, where it forms part of the small subunit (SSU) mRNA entry channel and plays a pivotal role in ribosome loading onto the mRNA. However, despite its critical functional role, very little is known concerning VAR1 gene expression. Here, we demonstrate that the protein Sov1 is an in bona fide VAR1 mRNA translational activator and additionally interacts with newly synthesized Var1 polypeptide. Moreover, we show that Sov1 assists the late steps of mtSSU biogenesis involving the incorporation of Var1, an event necessary for uS14 and mS46 assembly. Notably, we have uncovered a translational regulatory mechanism by which Sov1 fine-tunes Var1 synthesis with its assembly into the mitoribosome.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN Mitocondrial/genética , Regulación Fúngica de la Expresión Génica/genética , ARN Mensajero/genética
5.
J Biol Chem ; 295(18): 6023-6042, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32205446

RESUMEN

Coenzyme Q (Q n ) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1-coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6 The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because "fused" proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.


Asunto(s)
Eliminación de Gen , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Ubiquinona/análogos & derivados , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Mitocondrias/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biosíntesis , Ubiquinona/deficiencia , Ubiquinona/genética , Ubiquinona/metabolismo
6.
FEMS Yeast Res ; 21(7)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34755843

RESUMEN

Coenzyme Q (CoQ) is an essential molecule that consists of a highly substituted benzene ring attached to a polyprenyl tail anchored in the inner mitochondrial membrane. CoQ transfers electrons from NADH dehydrogenase and succinate dehydrogenase complexes toward ubiquinol-cytochrome c reductase, and that allows aerobic growth of cells. In Saccharomyces cerevisiae, the synthesis of CoQ depends on fourteen proteins Coq1p-Co11p, Yah1p, Arh1p, and Hfd1p. Some of these proteins are components of CoQ synthome. Using ab initio molecular modeling and site-directed mutagenesis, we identified the functional residues of the O-methyltransferase Coq3p, which depends on S-adenosylmethionine for catalysis and is necessary for two O-methylation steps required for CoQ maturation. Conserved residues as well as those that coevolved in the protein structure were found to have important roles in respiratory growth, CoQ biosynthesis, and also in the stability of CoQ synthome proteins. Finally, a multiple sequence alignment showed that S. cerevisiae Coq3p has a 45 amino acid residues insertion that is poorly conserved or absent in oleaginous yeast, cells that can store up to 20% of their dry weight as lipids. These results point to the Coq3p structural determinants of its biological and catalytic function and could contribute to the development of lipid-producing yeast for biotechnology.


Asunto(s)
Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Membranas Mitocondriales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Arch Biochem Biophys ; 666: 63-72, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30940569

RESUMEN

In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.


Asunto(s)
Cisteína/genética , Longevidad , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Serina/genética , Glutatión/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 292(41): 17011-17024, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821623

RESUMEN

Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H2O2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes.


Asunto(s)
Metaloproteasas/metabolismo , Mitocondrias/enzimología , Peroxidasas/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Metaloproteasas/genética , Mitocondrias/genética , Peroxidasas/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1896-1903, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29526819

RESUMEN

AMP-activated protein kinase (AMPK) regulates many different metabolic pathways in eukaryote cells including mitochondria biogenesis and energy homeostasis. Here we identify a patient with hypotonia, weakness, delayed milestones and neurological impairment since birth harbouring a novel homozygous mutation in the AMPK catalytic α-subunit 1, encoded by the PRKAA1 gene. The homozygous mutation p.S487L in isoform 1 present in the patient is in a cryptic residue for AMPK activity. In the present study, we performed the characterization of mitochondrial respiratory properties of the patient, in comparison to healthy controls, through the culture of skin fibroblasts in order to understand some of the cellular consequences of the PRKAA1 mutation. In these assays, mitochondrial respiratory complex I showed lower activity, which was followed by a decrement in the mtDNA copy number, which is a probable consequence of the lower expression of PGC-1α and PRKAA1 itself as measured in our quantitative PCRs experiments. Confirming the effect of the patient mutation in respiration, transfection of patient fibroblasts with wild type PRKAA1 partially restore complex I level. The preliminary clinic evaluations of the patient suggested a metabolic defect related to the mitochondrial respiratory function, therefore treatment with CoQ10 supplementation dose started four years ago and a clear improvement in motor skills and strength has been achieved with this treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibroblastos , Homocigoto , Mitocondrias , Mutación Missense , Consumo de Oxígeno , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Sustitución de Aminoácidos , Preescolar , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
10.
Yeast ; 35(3): 281-290, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29143358

RESUMEN

One of the hallmarks of Parkinson disease is α-synuclein aggregate deposition that leads to endoplasmic reticulum stress, Golgi fragmentation and impaired energy metabolism with consequent redox imbalance. In the last decade, many studies have used Saccharomyces cerevisiae as a model in order to explore the intracellular consequences of α-synuclein overexpression. In this study we propose to evaluate the respiratory outcome of yeast cells expressing α-synuclein. Cell viability or growth on selective media for respiratory activity was mainly affected in the α-synuclein-expressing cells if they were also treated with menadione, which stimulates reactive oxygen species production. We also tested whether melatonin, a natural antioxidant, would counteract the deleterious effects of α-synuclein and menadione. In fact, melatonin addition improved the respiratory growth of α-synuclein/menadione-challenged cells, presented a general improvement in the enzymatic activity of the respiratory complexes and finally elevated the rate of mitophagy, an important cellular process necessary for the clearance of damaged mitochondria. Altogether, our data confirms that α-synuclein impairs respiration in yeast, which can be rescued by melatonin addition.


Asunto(s)
Melatonina/farmacología , Consumo de Oxígeno/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Vitamina K 3/farmacología , alfa-Sinucleína/farmacología , Supervivencia Celular , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Consumo de Oxígeno/fisiología
11.
Cell Biol Int ; 42(6): 630-642, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29160602

RESUMEN

Saccharomyces cerevisiae mitoribosomes are specialized in the translation of a few number of highly hydrophobic membrane proteins, components of the oxidative phosphorylation system. Mitochondrial characteristics, such as the membrane system and its redox state driven mitoribosomes evolution through great diversion from their bacterial and cytosolic counterparts. Therefore, mitoribosome presents a considerable number of mitochondrial-specific proteins, as well as new protein extensions. In this work we characterize temperature sensitive mutants of the subunit bL34 present in the 54S large subunit. Although bL34 has bacterial homologs, in yeast it has a long 65 aminoacids mitochondrial N-terminal addressing sequence, here we demonstrate that it can be replaced by the mitochondrial addressing sequence of Neurospora crassa ATP9 gene. The bL34 temperature sensitive mutants present lowered translation of mitochondrial COX1 and COX3, which resulted in reduced cytochrome c oxidase activity and respiratory growth deficiency. The sedimentation properties of bL34 in sucrose gradients suggest that similarly to its bacterial homolog, bL34 is also a later participant in the process of mitoribosome biogenesis.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Biosíntesis de Proteínas , Proteínas RGS/genética , Proteínas RGS/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
12.
Curr Genet ; 62(3): 607-17, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26780366

RESUMEN

Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón , Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Alelos , Aminoacil-ARNt Sintetasas/química , Regulación Fúngica de la Expresión Génica , Genotipo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Transcripción Genética
13.
Am J Hum Genet ; 91(4): 729-36, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23022099

RESUMEN

Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Consanguinidad , ADN Mitocondrial/genética , Exones , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Recién Nacido , Masculino , Encefalomiopatías Mitocondriales/metabolismo , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética
15.
Biochem J ; 449(3): 595-603, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23116202

RESUMEN

Saccharomyces cerevisiae has three distinct inner mitochondrial membrane NADH dehydrogenases mediating the transfer of electrons from NADH to CoQ (coenzyme Q): Nde1p, Nde2p and Ndi1p. The active site of Ndi1p faces the matrix side, whereas the enzymatic activities of Nde1p and Nde2p are restricted to the intermembrane space side, where they are responsible for cytosolic NADH oxidation. In the present study we genetically manipulated yeast strains in order to alter the redox state of CoQ and NADH dehydrogenases to evaluate the consequences on mtDNA (mitochondrial DNA) maintenance. Interestingly, nde1 deletion was protective for mtDNA in strains defective in CoQ function. Additionally, the absence of functional Nde1p promoted a decrease in the rate of H2O2 release in isolated mitochondria from different yeast strains. On the other hand, overexpression of the predominant NADH dehydrogenase NDE1 elevated the rate of mtDNA loss and was toxic to coq10 and coq4 mutants. Increased CoQ synthesis through COQ8 overexpression also demonstrated that there is a correlation between CoQ respiratory function and mtDNA loss: supraphysiological CoQ levels were protective against mtDNA loss in the presence of oxidative imbalance generated by Nde1p excess or exogenous H2O2. Altogether, our results indicate that impairment in the oxidation of cytosolic NADH by Nde1p is deleterious towards mitochondrial biogenesis due to an increase in reactive oxygen species release.


Asunto(s)
ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo , Secuencia de Bases , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Eliminación de Gen , Genes Fúngicos , Peróxido de Hidrógeno/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Mutación , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
J Biol Chem ; 287(29): 24346-55, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22621929

RESUMEN

Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , GTP Fosfohidrolasas/genética , Mutación , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
17.
Fungal Genet Biol ; 60: 133-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23850602

RESUMEN

Bacterial GatCAB amidotransferases are responsible for the transamidation of mischarged glutamyl-tRNA(Gln) into glutaminyl-tRNA(Gln). Mitochondria matrix also has a multienzymatic complex necessary for the transamidation of glutamyl-tRNA(Gln). Gtf1p, Her2p and Pet112p are the constituents of mitochondrial GatFAB amidotransferase complex. Her2p is subunit A of GatFAB complex, while Gtf1p is subunit F, a connector protein between Pet112p (subunit B) and Her2p. Here we evaluate through molecular modeling and amino acid correlation analysis the HER2 protein family. Localization studies indicated that Her2p is predominantly localized in the mitochondrial outer membrane, but it is also located in the mitochondrial matrix where together with Pet112p and Gtf1p constitutes the GatFAB complex. Finally, HER2 random mutagenesis unveiled important residues that provide thermo stability for the complex and are differently suppressed by overexpression of GTF1 or PET112. For instance, her2/ts11 mutant showed its fermentative growth impaired, and poorly rescued by GTF1 indicating that Her2p unknown function in the mitochondria outer membrane affects cell viability.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Supervivencia Celular , Mapeo Cromosómico , Retículo Endoplásmico/metabolismo , Glutamina/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Mutación , Aminoacil-ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Transaminasas/metabolismo
18.
J Biol Chem ; 286(38): 32937-47, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21799017

RESUMEN

The bacterial GatCAB operon for tRNA-dependent amidotransferase (AdT) catalyzes the transamidation of mischarged glutamyl-tRNA(Gln) to glutaminyl-tRNA(Gln). Here we describe the phenotype of temperature-sensitive (ts) mutants of GTF1, a gene proposed to code for subunit F of mitochondrial AdT in Saccharomyces cerevisiae. The ts gtf1 mutants accumulate an electrophoretic variant of the mitochondrially encoded Cox2p subunit of cytochrome oxidase and an unstable form of the Atp8p subunit of the F(1)-F(0) ATP synthase that is degraded, thereby preventing assembly of the F(0) sector. Allotopic expression of recoded ATP8 and COX2 did not significantly improve growth of gtf1 mutants on respiratory substrates. However, ts gft1 mutants are partially rescued by overexpression of PET112 and HER2 that code for the yeast homologues of the catalytic subunits of bacterial AdT. Additionally, B66, a her2 point mutant has a phenotype similar to that of gtf1 mutants. These results provide genetic support for the essentiality, in vivo, of the GatF subunit of the heterotrimeric AdT that catalyzes formation of glutaminyl-tRNA(Gln) (Frechin, M., Senger, B., Brayé, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Genes Dev. 23, 1119-1130).


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Mitocondrias/enzimología , Transferasas de Grupos Nitrogenados/metabolismo , Subunidades de Proteína/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Antimicina A/análogos & derivados , Antimicina A/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Mitocondriales/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/genética , NADH Deshidrogenasa/metabolismo , Péptidos/química , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Temperatura
19.
Am J Hum Genet ; 82(3): 661-72, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18319074

RESUMEN

Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.


Asunto(s)
Ataxia Cerebelosa/genética , Genes Recesivos , Ubiquinona/análogos & derivados , Secuencia de Aminoácidos , Encéfalo/patología , Ataxia Cerebelosa/enzimología , Coenzimas/deficiencia , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Fosfotransferasas/genética , Análisis de Secuencia de ADN , Ubiquinona/deficiencia , Ubiquinona/genética , Levaduras/genética
20.
J Bioenerg Biomembr ; 43(5): 483-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21833600

RESUMEN

We studied the importance of respiratory fitness in S. cerevisiae lifespan, response to caloric restriction (CR) and mtDNA stability. Mutants harboring mtDNA instability and electron transport defects do not respond to CR, while tricarboxylic acid cycle mutants presented extended lifespans due to CR. Interestingly, mtDNA is unstable in cells lacking dihydrolipoyl dehydrogenase under CR conditions, and cells lacking aconitase under standard conditions (both enzymes are components of the TCA and mitochondrial nucleoid). Altogether, our data indicate that respiratory integrity is required for lifespan extension by CR and that mtDNA stability is regulated by nucleoid proteins in a glucose-sensitive manner.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Consumo de Oxígeno/fisiología , Saccharomyces cerevisiae/metabolismo , ADN de Hongos/genética , ADN Mitocondrial/genética , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA