Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Mol Med ; 17(8): 1048-58, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23890189

RESUMEN

Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes-clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma--but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC.


Asunto(s)
Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Factor de Transcripción PAX2/genética , Adenoma Oxifílico/diagnóstico , Adenoma Oxifílico/genética , Adenoma Oxifílico/patología , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Carcinoma de Células Renales/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Cromosomas Humanos Par 10/genética , Metilación de ADN/genética , Diagnóstico Diferencial , Femenino , Dosificación de Gen/genética , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Factor de Transcripción PAX2/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Eur Urol Oncol ; 2(1): 1-11, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30929837

RESUMEN

BACKGROUND: The prostate cancer (PCa) diagnostic pathway is undergoing a radical change with the introduction of multiparametric magnetic resonance imaging (mpMRI), genomic testing, and different prostate biopsy techniques. It has been proposed that these tests should be used in a sequential manner to optimise risk stratification. OBJECTIVE: To characterise the genomic, epigenomic, and transcriptomic features of mpMRI-visible and -nonvisible PCa in clinically localised disease. DESIGN, SETTING, AND PARTICIPANTS: Multicore analysis of fresh prostate tissue sampled immediately after radical prostatectomy was performed for intermediate- to high-risk PCa. INTERVENTION: Low-pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores taken from microscopically benign and cancerous areas in the same prostate. Circulating free and germline DNA was assessed from the blood of five patients. OUTCOME MEASUREMENT AND STATISTICAL ANALYSIS: Correlations between preoperative mpMRI and genomic characteristics of tumour and benign prostate samples were assessed. Gene profiles for individual tumour cores were correlated with existing genomic classifiers currently used for prognostication. RESULTS AND LIMITATIONS: A total of 43 prostate cores (22 tumour and 21 benign) were profiled from six whole prostate glands. Of the 22 tumour cores, 16 were tumours visible and six were tumours nonvisible on mpMRI. Intratumour genomic, epigenomic, and transcriptomic heterogeneity was found within mpMRI-visible lesions. This could potentially lead to misclassification of patients using signatures based on copy number or RNA expression. Moreover, three of the six cores obtained from mpMRI-nonvisible tumours harboured one or more genetic alterations commonly observed in metastatic castration-resistant PCa. No circulating free DNA alterations were found. Limitations include the small cohort size and lack of follow-up. CONCLUSIONS: Our study supports the continued use of systematic prostate sampling in addition to mpMRI, as avoidance of systematic biopsies in patients with negative mpMRI may mean that clinically significant tumours harbouring genetic alterations commonly seen in metastatic PCa are missed. Furthermore, there is inconsistency in individual genomics when genomic classifiers are applied. PATIENT SUMMARY: Our study shows that tumour heterogeneity within prostate tumours visible on multiparametric magnetic resonance imaging (mpMRI) can lead to misclassification of patients if only one core is used for genomic analysis. In addition, some cancers that were missed by mpMRI had genomic aberrations that are commonly seen in advanced metastatic prostate cancer. Avoiding biopsies in mpMRI-negative cases may mean that such potentially lethal cancers are missed.


Asunto(s)
Genómica/métodos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Anciano , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/genética
3.
PLoS One ; 8(3): e58206, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505468

RESUMEN

MGMT downregulation in high-grade gliomas (HGG) has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP) or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA). By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation) and genetic (monosomy, locus deletion) changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy.


Asunto(s)
Aberraciones Cromosómicas , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Proteínas Supresoras de Tumor/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN , Metilación de ADN , Glioma/mortalidad , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , Regiones Promotoras Genéticas , ARN Mensajero/genética , Adulto Joven
4.
Transl Oncol ; 6(5): 546-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24151535

RESUMEN

Colorectal cancer (CRC) is the third most common cancer disease in the Western world, and about 40% of the patients die from this disease. The cancer cells are commonly genetically unstable, but only a few low-frequency recurrent fusion genes have so far been reported for this disease. In this study, we present a thorough search for novel fusion transcripts in CRC using high-throughput RNA sequencing. From altogether 220 million paired-end sequence reads from seven CRC cell lines, we identified 3391 candidate fused transcripts. By stringent requirements, we nominated 11 candidate fusion transcripts for further experimental validation, of which 10 were positive by reverse transcription-polymerase chain reaction and Sanger sequencing. Six were intrachromosomal fusion transcripts, and interestingly, three of these, AKAP13-PDE8A, COMMD10-AP3S1, and CTB-35F21.1-PSD2, were present in, respectively, 18, 18, and 20 of 21 analyzed cell lines and in, respectively, 18, 61, and 48 (17%-58%) of 106 primary cancer tissues. These three fusion transcripts were also detected in 2 to 4 of 14 normal colonic mucosa samples (14%-28%). Whole-genome sequencing identified a specific genomic breakpoint in COMMD10-AP3S1 and further indicates that both the COMMD10-AP3S1 and AKAP13-PDE8A fusion transcripts are due to genomic duplications in specific cell lines. In conclusion, we have identified AKAP13-PDE8A, COMMD10-AP3S1, and CTB-35F21.1-PSD2 as novel intrachromosomal fusion transcripts and the most highly recurring chimeric transcripts described for CRC to date. The functional and clinical relevance of these chimeric RNA molecules remains to be elucidated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA