Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nano Lett ; 24(25): 7584-7592, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38775805

RESUMEN

Herein, the self-assembly of one-dimensional titanium oxide lepidocrocite nanofilaments in 10 different water miscible organic solvents was investigated. The nanofilament snippets, with minimal cross sections of ∼5 × 7 Å2 and lengths around 30 nm, begin as an aqueous colloidal suspension. Upon addition, and brief mixing, of the colloidal suspension into a given solvent, a multitude of morphologies─seemingly based on the hydrophilicity and polarity of the solvent─emerge. These morphologies vary between sheets, highly networked webs, and discrete fibers, all with no apparent change in the lepidocrocite structure. On the micro- and nanoscale, the morphologies are reminiscent of biological, rather than inorganic, materials. The results of this work give insight into the self-assembly of these materials and offer new pathways for novel macrostructures/morphologies assembled from these highly adsorbent and catalytically active low-dimensional materials.

2.
Langmuir ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016446

RESUMEN

The novel material, one-dimensional lepidocrocite (1DL) titanate, is attracting industrial and scientific interest because of its applicability to a wide range of practical applications and its ease of synthesis and scale up of production. In this study, we investigated the CO2 adsorption capability and pore structures of 1DL freeze-dried and lithium chloride washed air-dried powders. The synthesized 1DL was characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Using the constant-volume method, CO2 gas adsorption revealed that the 1DL exhibits type IV adsorption-desorption isotherms. The heats of adsorption obtained from the adsorption branches are lower than those obtained from the desorption branches. Brunauer-Emmett-Teller (BET) analysis, using N2 gas adsorption isotherms at 77 K showed that 1DL possesses 80.2 m2/g of BET specific surface area. Nonlocal density functional theory analysis indicated that two types of pores, meso-pores and ultramicro pores, exist in the 1DL freeze-dried powders. This work provides deep insights into the pore structures and CO2 adsorption mechanisms of 1DL powders.

3.
Small ; 16(4): e1905784, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31867896

RESUMEN

MXenes-2D carbides/nitrides derived from their bulk nanolamellar Mn +1 AXn phase (MAX) counterparts-are, for the most part, obtained by chemical etching. Despite the fact that the MA bonds in the MAX phases are not weak, in this work it is demonstrated that relatively large MAX single crystals can be mechanically exfoliated using the adhesive tape method to produce flakes whose thickness can be reduced down to half a unit cell. The exfoliated flakes, transferred onto SiO2 /Si substrates, are analyzed using electric force microscopy (EFM). No appreciable variation in EFM signal with flake thickness is found. EFM contrast between the flakes and SiO2 not only depends on the contact surface potential, but also on the local capacitance. The contribution of the latter can be used to show the metallic character-confirmed by four-contact resistivity measurements-of even the thinnest of flakes. Because the A-layers are preserved, strictly speaking MXenes are not dealt with in this work, but rather MAXenes. This is important in the case where the "A" layers contain magnetic elements such as Mo4 Ce4 Al7 C3 , whose structure is a derivative of the MAX structure.

4.
Nature ; 516(7529): 78-81, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25470044

RESUMEN

Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

5.
Inorg Chem ; 58(2): 1100-1106, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30608675

RESUMEN

Nanolamellar transition metal carbides are gaining increasing interests because of the recent developments of their two-dimensional (2D) derivatives and promising performance for a variety of applications from energy storage, catalysis to transparent conductive coatings, and medicine. To develop more novel 2D materials, new nanolaminated structures are needed. Here we report on a tungsten-based nanolaminated ternary phase, (W,Ti)4C4- x, synthesized by an Al-catalyzed reaction of W, Ti, and C powders at 1600 °C for 4 h, under flowing argon. X-ray and neutron diffraction, along with Z-contrast scanning transmission electron microscopy, were used to determine the atomic structure, ordering, and occupancies. This phase has a layered hexagonal structure ( P63 /mmc) with lattice parameters, a = 3.00880(7) Å, and c = 19.5633(6) Å and a nominal chemistry of (W,Ti)4C4- x (actual chemistry, W2.1(1)Ti1.6(1)C2.6(1)). The structure is comprised of layers of pure W that are also twin planes with two adjacent atomic layers of mixed W and Ti, on either side. The use of Al as a catalyst for synthesizing otherwise difficult to make phases, could in turn lead to the discovery of a large family of nonstoichiometric ternary transition metal carbides, synthesized at relatively low temperatures and shorter times.

6.
Angew Chem Int Ed Engl ; 58(36): 12655-12660, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31293049

RESUMEN

MXenes have shown promise in myriad applications, such as energy storage, catalysis, EMI shielding, among many others. However, MXene oxidation in aqueous colloidal suspensions when stored in water at ambient conditions remains a challenge. It is now shown that by simply capping the edges of individual MXene flakes, Ti3 C2 Tz and V2 CTz , by polyanions such as polyphosphates, polysilicates or polyborates, it is possible to quite significantly reduce their propensity for oxidation even when held in aerated water for weeks. This breakthrough resulted from the realization that the edges of MXene sheets are positively charged. It is thus an example of selectively functionalizing the edges differently from the MXene sheet surfaces.

7.
Small ; 14(17): e1703676, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29611285

RESUMEN

The exploration of 2D solids is one of our time's generators of materials discoveries. A recent addition to the 2D world is MXenes that possses a rich chemistry due to the large parent family of MAX phases. Recently, a new type of atomic laminated phases (coined i-MAX) is reported, in which two different transition metal atoms are ordered in the basal planes. Herein, these i-MAX phases are used in a new route for tailoriong the MXene structure and composition. By employing different etching protocols to the parent i-MAX phase (Mo2/3 Y1/3 )2 AlC, the resulting MXene can be either: i) (Mo2/3 Y1/3 )2 C with in-plane elemental order through selective removal of Al atoms or ii) Mo1.33 C with ordered vacancies through selective removal of both Al and Y atoms. When (Mo2/3 Y1/3 )2 C (ideal stoichiometry) is used as an electrode in a supercapacitor-with KOH electrolyte-a volumetric capacitance exceeding 1500 F cm-3 is obtained, which is 40% higher than that of its Mo1.33 C counterpart. With H2 SO4 , the trend is reversed, with the latter exhibiting the higher capacitance (≈1200 F cm-3 ). This additional ability for structural tailoring will indubitably prove to be a powerful tool in property-tailoring of 2D materials, as exemplified here for supercapacitors.

8.
Angew Chem Int Ed Engl ; 57(6): 1485-1490, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29071772

RESUMEN

Dehydrogenation or oxidative dehydrogenation (ODH) of alkanes to produce alkenes directly from natural gas/shale gas is gaining in importance. Ti3 AlC2 , a MAX phase, which hitherto had not been used in catalysis, efficiently catalyzes the ODH of n-butane to butenes and butadiene, which are important intermediates for the synthesis of polymers and other compounds. The catalyst, which combines both metallic and ceramic properties, is stable for at least 30 h on stream, even at low O2 :butane ratios, without suffering from coking. This material has neither lattice oxygens nor noble metals, yet a unique combination of numerous defects and a thin surface Ti1-y Aly O2-y/2 layer that is rich in oxygen vacancies makes it an active catalyst. Given the large number of compositions available, MAX phases may find applications in several heterogeneously catalyzed reactions.

9.
Proc Natl Acad Sci U S A ; 111(47): 16676-81, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25389310

RESUMEN

MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2T(x) MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2T(x)/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 10(4) S/m in the case of the Ti3C2T(x)/PVA composite film and 2.4 × 10(5) S/m for pure Ti3C2T(x) films. The tensile strength of the Ti3C2T(x)/PVA composites was significantly enhanced compared with pure Ti3C2T(x) or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm(3) for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.

10.
Nano Lett ; 15(8): 4955-60, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26177010

RESUMEN

The properties of two-dimensional (2D) materials depend strongly on the chemical and electrochemical activity of their surfaces. MXene, one of the most recent additions to 2D materials, shows great promise as an energy storage material. In the present investigation, the chemical and structural properties of individual Ti3C2 MXene sheets with associated surface groups are investigated at the atomic level by aberration corrected STEM-EELS. The MXene sheets are shown to exhibit a nonuniform coverage of O-based surface groups which locally affect the chemistry. Additionally, native point defects which are proposed to affect the local surface chemistry, such as oxidized titanium adatoms (TiOx), are identified and found to be mobile.

11.
Angew Chem Int Ed Engl ; 54(16): 4810-4, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25714491

RESUMEN

Herein we electrochemically and selectively extract Ti from the MAX phase Ti2SC to form carbon/sulfur (C/S) nanolaminates at room temperature. The products are composed of multi-layers of C/S flakes, with predominantly amorphous and some graphene-like structures. Covalent bonding between C and S is observed in the nanolaminates, which render the latter promising candidates as electrode materials for Li-S batteries. We also show that it is possible to extract Ti from other MAX phases, such as Ti3AlC2, Ti3SnC2, and Ti2GeC, suggesting that electrochemical etching can be a powerful method to selectively extract the "M" elements from the MAX phases, to produce "AX" layered structures, that cannot be made otherwise. The latter hold promise for a variety of applications, such as energy storage, catalysis, etc.

12.
J Am Chem Soc ; 136(17): 6385-94, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24678996

RESUMEN

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.

13.
Angew Chem Int Ed Engl ; 53(19): 4877-80, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24692047

RESUMEN

Porous carbons are widely used in energy storage and gas separation applications, but their synthesis always involves high temperatures. Herein we electrochemically selectively extract, at ambient temperature, the metal atoms from the ternary layered carbides, Ti3 AlC2 , Ti2 AlC and Ti3 SiC2 (MAX phases). The result is a predominantly amorphous carbide-derived carbon, with a narrow distribution of micropores. The latter is produced by placing the carbides in HF, HCl or NaCl solutions and applying anodic potentials. The pores that form when Ti3 AlC2 is etched in dilute HF are around 0.5 nm in diameter. This approach forgoes energy-intensive thermal treatments and presents a novel method for developing carbons with finely tuned pores for a variety of applications, such as supercapacitor, battery electrodes or CO2 capture.

14.
Adv Mater ; 36(28): e2402012, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38722144

RESUMEN

Metal oxide nanostructures have received an increasing attention owing to their unique chemical and physical properties along with their widespread applications in various fields. This article provides an overview of the recent discovery - christened Hydroxides-Derived Nanostructures, or HDNs - in which hydroxide aqueous solutions (mostly tetramethylammonium hydroxide, TMAH) are reacted at temperatures < 100 °C and under atmospheric pressure with various metal-containing precursors to scalably prepare novel metal oxide nanostructures. In one case, a dozen commercial and earth abundant Ti-containing powders such as binary carbides, nitrides, borides, among others, are converted into new, 1D TiO2-based lepidocrocite (1DL) nanofilaments (NFs). Application-wise, the 1DLs show outstanding performance in a number of energy, environmental, and biomedical fields such as photo- and electrocatalysis, water splitting, lithium-sulfur and lithium-ion batteries, water purification, dye degradation, cancer therapy, and polymer composites. In addition to 1DL, the HDNs family encompasses other metal oxides nanostructures including magnetic Fe3O4 nanoparticles and MnO2 birnessite-based crystalline 2D flakes. The latter showed promise in electrochemical energy conversion and storage applications. The developed recipe provides a new vista in the molecular self-assembly synthesis of nanomaterials that can advance the field with a library of novel nanostructures with substantial implications in a multitude of fields.

15.
J Am Chem Soc ; 135(43): 15966-9, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24144164

RESUMEN

New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge-discharge rates. Reversible capacities of 170 and 260 mA·h·g(-1) at 1 C, and 110 and 125 mA·h·g(-1) at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37890126

RESUMEN

The high theoretical energy density of metal-sulfur batteries compared to their lithium-ion counter parts renders sulfur-based electrode chemistries attractive. Additionally, sulfur is relatively abundant and environmentally benign. Yet, issues like the low conductivity of sulfur, polysulfide (PS) formation, and shuttling have hindered the development of sulfur chemistries. Here, we react titanium carbide powders with tetramethylammonium hydroxide ammonium salts at 50 °C for 5 days and convert them into one dimensional, titania-based lepidocrocite (1DL) nanofilaments (NFs) using our facile bottom-up approach. This simple and scalable approach led to better electrode functionalization, facile tunability, and a higher density of active sites. The 1DL NFs self-assembled into a variety of microstructures─from individual 1DL NFs with minimal cross sections ≈5 × 7 Å2 to 2D flakes to mesoscopic particles. A composite was made with a 1:1 weight ratio of sulfur and 1DL NFs, which were hand-ground, mixed with carbon black and binder in a weight ratio of 70:20:10, respectively. We obtained a specific capacity of 750 mA h g-1 at 0.5C for 300 cycles. The 1DL NFs that, in this case assembled into 2D layers, trapped the polysulfides, PSs, by forming thiosulfate species and Lewis acid-base interactions with the Ti, as confirmed by post-mortem X-ray photoelectron spectroscopy. These interactions were also confirmed by PS adsorption via UV-vis spectroscopy and shuttle current measurements that showed lower PS shuttling in the 1DL NFs cells.

17.
Adv Mater ; 35(8): e2208659, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36369973

RESUMEN

2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti3 C2 , Mo2 Ti2 C3 , and Nb2 C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti3 C2 , that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.

18.
Nanomicro Lett ; 15(1): 194, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556089

RESUMEN

Two-dimensional transition metal carbides and nitrides (MXene) have emerged as promising candidates for microwave absorption (MA) materials. However, they also have some drawbacks, such as poor impedance matching, high self-stacking tendency, and high density. To tackle these challenges, MXene nanosheets were incorporated into polyacrylonitrile (PAN) nanofibers and subsequently assembled into a three-dimensional (3D) network structure through PAN carbonization, yielding MXene/C aerogels. The 3D network effectively extends the path of microcurrent transmission, leading to enhanced conductive loss of electromagnetic (EM) waves. Moreover, the aerogel's rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXene-based absorbers. EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss (RLmin) value of - 53.02 dB (f = 4.44 GHz, t = 3.8 mm), and an effective absorption bandwidth (EAB) of 5.3 GHz (t = 2.4 mm, 7.44-12.72 GHz). Radar cross-sectional (RCS) simulations were employed to assess the radar stealth effect of the aerogels, revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m2. In addition to the MA performance, the MXene/C aerogel also demonstrates good thermal insulation performance, and a 5-mm-thick aerogel can generate a temperature gradient of over 30 °C at 82 °C. This study provides a feasible design approach for creating lightweight, efficient, and multifunctional MXene-based MA materials.

19.
RSC Adv ; 12(47): 30846-30850, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36349151

RESUMEN

Treatment of HF or HCl/LiF etched Ti3C2T z with 0.05 M NaHCO3 before water washing reduces the wastewater generated by 75%. When etched with HF, cryolite (Na3AlF6) precipitation from spent etching waste effectively removes fluorine from this waste stream, offers insight into the etching chemistry of MAX to MXene, and provides an effective analytical tool for optimization of MXene production. Additionally, washing HF etched multilayered Ti3C2T z with 0.05 M NaHCO3 allows for the production of delaminated Ti3C2T z colloidal suspensions, which typically requires the use of TBAOH or DMSO for intercalation and subsequent delamination. Ti3C2T z made with HCl/LiF and washed with 0.05 M NaHCO3 yields a colloidal suspension with a concentration of 18 mg mL-1 and a film conductivity of 1150 S cm-1.

20.
Adv Mater ; 33(39): e2103393, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34396592

RESUMEN

Since their discovery in 2011, the number of 2D transition metal carbides and nitrides (MXenes) has steadily increased. Currently more than 40 MXene compositions exist. The ultimate number is far greater and in time they may develop into the largest family of 2D materials known. MXenes' unique properties, such as their metal-like electrical conductivity reaching ≈20 000 S cm-1 , render them quite useful in a large number of applications, including energy storage, optoelectronic, biomedical, communications, and environmental. The number of MXene papers and patents published has been growing quickly. The first MXene generation is synthesized using selective etching of metal layers from the MAX phases, layered transition metal carbides and carbonitrides using hydrofluoric acid. Since then, multiple synthesis approaches have been developed, including selective etching in a mixture of fluoride salts and various acids, non-aqueous etchants, halogens, and molten salts, allowing for the synthesis of new MXenes with better control over their surface chemistries. Herein, a brief historical overview of the first 10 years of MXene research and a perspective on their synthesis and future development are provided. The fact that their production is readily scalable in aqueous environments, with high yields bodes well for their commercialization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA