Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 16(42): e2003425, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32996250

RESUMEN

The ability of floating ferns Salvinia to keep a permanent layer of air under water is of great interest, e.g., for drag-reducing ship coatings. The air-retaining hairs are superhydrophobic, but have hydrophilic tips at their ends, pinning the air-water interface. Here, experimental and theoretical approaches are used to examine the contribution of this pinning effect for air-layer stability under pressure changes. By applying the capillary adhesion technique, the adhesion forces of individual hairs to the water surface is determined to be about 20 µN per hair. Using confocal microscopy and fluorescence labeling, it is found that the leaves maintain a stable air layer up to an underpressure of 65 mbar. Combining both results, overall pinning forces are obtained, which account for only about 1% of the total air-retaining force. It is suggested that the restoring force of the entrapped air layer is responsible for the remaining 99%. This model of the entrapped air acting is verified as a pneumatic spring ("air-spring") by an experiment shortcircuiting the air layer, which results in immediate air loss. Thus, the plant enhances its air-layer stability against pressure fluctuations by a factor of 100 by utilizing the entrapped air volume as an elastic spring.


Asunto(s)
Helechos , Interacciones Hidrofóbicas e Hidrofílicas , Hojas de la Planta , Agua
2.
Langmuir ; 33(22): 5555-5564, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28260383

RESUMEN

Fog-collecting meshes show a great potential in ensuring the availability of a supply of sustainable freshwater in certain arid regions. In most cases, the meshes are made of hydrophilic smooth fibers. Based on the study of plant surfaces, we analyzed the fog collection using various polyethylene terephthalate (PET) fibers with different cross sections and surface structures with the aim of developing optimized biomimetic fog collectors. Water droplet movement and the onset of dripping from fiber samples were compared. Fibers with round, oval, and rectangular cross sections with round edges showed higher fog-collection performance than those with other cross sections. However, other parameters, for example, width, surface structure, wettability, and so forth, also influenced the performance. The directional delivery of the collected fog droplets by wavy/v-shaped microgrooves on the surface of the fibers enhances the formation of a water film and their fog collection. A numerical simulation of the water droplet spreading behavior strongly supports these findings. Therefore, our study suggests the use of fibers with a round cross section, a microgrooved surface, and an optimized width for an efficient fog collection.

3.
Bioinspir Biomim ; 18(3)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36881911

RESUMEN

Certain superhydrophobic plants, such asSalvinia molesta, are able to adsorb oil films from water surfaces and thus separate the oil from the water. There are first attempts to transfer this phenomenon to technical surfaces, but the functional principle and the influence of certain parameters are not yet fully understood. The aim of this work is to understand the interaction behavior between biological surfaces and oil, and to define design parameters for transferring the biological model to a technical textile. This will reduce the development time of a biologically inspired textile. For this purpose, the biological surface is transferred into a 2D model and the horizontal oil transport is simulated in Ansys Fluent. From these simulations, the influence of contact angle, oil viscosity and fiber spacing/diameter ratio was quantified. The simulation results were verified with transport tests on spacer fabrics and 3D prints. The values obtained serve as a starting point for the development of a bio-inspired textile for the removal of oil spills on water surfaces. Such a bio-inspired textile provides the basis for a novel method of oil-water separation that does not require the use of chemicals or energy. As a result, it offers great added value compared to existing methods.


Asunto(s)
Biónica , Textiles , Agua/química , Simulación por Computador
4.
Langmuir ; 28(40): 14338-46, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22978578

RESUMEN

In contrast to advancements in the fabrication of new superhydrophobic materials, the characterization of their water repellency and quality is often coarse and unsatisfactory. In view of the problems and inaccuracies, particularly in the measurement of very high contact angles, we developed alternative methods for the characterization of superhydrophobic surfaces. It was found that adhering water remnants after immersion are a useful criterion in determining the repellency quality. In this study, we introduce microscopy methods to detect traces of water-resembling test liquids on superhydrophobic surfaces by scanning electron microscopy (SEM) or fluorescence light microscopy (FLM). Diverse plant surfaces and some artificial superhydrophobic samples were examined. Instead of pure water, we used aqueous solutions containing a detectable stain and glycerol in order to prevent immediate evaporation of the microdroplets. For the SEM examinations, aqueous solutions of lead acetate were used, which could be detected in a frozen state at -90 °C with high sensitivity using a backscattered electron detector. For fluorescence microscopy, aqueous solutions of auramine were used. On different species of superhydrophobic plants, varying patterns of remaining microdroplets were found on their leaves. On some species, drop remnants occurred only on surface defects such as damaged epicuticular waxes. On others, microdroplets regularly decorated the locations of increased adhesion, particularly on hierarchically structured surfaces. Furthermore, it is demonstrated that the method is suitable for testing the limits of repellency under harsh conditions, such as drop impact or long-enduring contact. The supplementation of the visualization method by the measurement of the pull-off force between a water drop and the sample allowed us to determine the adhesive properties of superhydrophobic surfaces quantitatively. The results were in good agreement with former studies of the water repellency and contact angles. In contrast to contact angle measurements, the acqusition of SEM images with high resolution and wide depth of sharpness gives better insight into the wetting behavior and susceptibility of the structural elements of the superhydrophobic surfaces.


Asunto(s)
Adhesivos/química , Microscopía Electrónica de Rastreo/métodos , Humectabilidad , Imagen Molecular , Hojas de la Planta/química , Control de Calidad , Agua/química
5.
Proc Natl Acad Sci U S A ; 106(23): 9322-7, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19470638

RESUMEN

Endemism and species richness are highly relevant to the global prioritization of conservation efforts in which oceanic islands have remained relatively neglected. When compared to mainland areas, oceanic islands in general are known for their high percentage of endemic species but only moderate levels of species richness, prompting the question of their relative conservation value. Here we quantify geographic patterns of endemism-scaled richness ("endemism richness") of vascular plants across 90 terrestrial biogeographic regions, including islands, worldwide and evaluate their congruence with terrestrial vertebrates. Endemism richness of plants and vertebrates is strongly related, and values on islands exceed those of mainland regions by a factor of 9.5 and 8.1 for plants and vertebrates, respectively. Comparisons of different measures of past and future human impact and land cover change further reveal marked differences between mainland and island regions. While island and mainland regions suffered equally from past habitat loss, we find the human impact index, a measure of current threat, to be significantly higher on islands. Projected land-cover changes for the year 2100 indicate that land-use-driven changes on islands might strongly increase in the future. Given their conservation risks, smaller land areas, and high levels of endemism richness, islands may offer particularly high returns for species conservation efforts and therefore warrant a high priority in global biodiversity conservation in this century.


Asunto(s)
Biodiversidad , Plantas/clasificación , Vertebrados/clasificación , Animales , Conservación de los Recursos Naturales , Ecosistema , Geografía , Humanos
6.
Beilstein J Nanotechnol ; 13: 1370-1379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483637

RESUMEN

Superhydrophobic surfaces are well known for most different functions in plants, animals, and thus for biomimetic technical applications. Beside the Lotus Effect, one of their features with great technical, economic and ecologic potential is the Salvinia Effect, the capability to keep a stable air layer when submerged under water. Such air layers are of great importance, e.g., for drag reduction (passive air lubrication), antifouling, sensor applications or oil-water separation. Some biological models, e.g., the floating fern Salvinia or the backswimmer Notonecta, show long term stable air retention even under hydrodynamic conditions. Therefore, they are ideal models for the development of technical biomimetic air retaining surfaces. Up to now, several prototypes of such surfaces have been developed, but none provides both, stable air retention and cost effective large scale production. Meanwhile, a novel biomimetic surface is commercially available and produced on a large scale: an adhesive elastomeric film with mushroom-shaped surface microstructures that mimic the adhesion system of animals. In this study, we show that these films, which have been initially developed for a different purpose, due to their specific geometry at the microscale, are capable of stable air retention under water. We present first results concerning the capabilities of mushroom-shaped surface microstructures and show that this elastomer foil is able to stabilize a permanent air layer under water for more than two weeks. Further, the stability of the air layer under pressure was investigated and these results are compared with the predicted theoretical values for air retention of microstructured surfaces. Here, we could show that they fit to the theoretical predictions and that the biomimetic elastomer foil is a promising base for the development of an economically and efficient biomimetic air retaining surface for a broad range of technical applications.

7.
Front Plant Sci ; 13: 880439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685010

RESUMEN

Plants and other organisms have evolved structures and mechanisms for colonizing land since the Early Ordovician. In this context, their surfaces, the crucial physical interface with the environment, are mainly considered barriers against water loss. It is suggested that extreme water repellency (superhydrophobicity) was an additional key innovation for the transition of algae from water to land some 400 mya. Superhydrophobicity enhances gas exchange on land and excludes aquatic competitors in water films. In a different context, in material science and surface technology, superhydrophobicity has also become one of the most important bioinspired innovations enabling the avoidance of water films and contamination. Here, we present data for an extremely water-repellent cyanobacterial biofilm of the desiccation tolerant Hassallia byssoidea providing evidence for a much earlier prokaryotic Precambrian (ca. 1-2 bya) origin of superhydrophobicity and chemical heterogeneities associated with land transition. The multicellular cyanobacterium is functionally differentiated in a submerged basal hydrophilic absorbing portion like a "rhizoid" and an upright emersed superhydrophobic "phyllocauloid" filament for assimilation, nitrogen fixation, and splash dispersed diaspores. Additional data are provided for superhydrophobic surfaces in terrestrial green algae and in virtually all ancestral land plants (Bryophytes, ferns and allies, Amborella, Nelumbo), slime molds, and fungi. Rethinking of superhydrophobicity as an essential first step for life in terrestrial environments is suggested.

8.
Am J Bot ; 98(9): 1549-72, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21900612

RESUMEN

PREMISE OF THE STUDY: The Cactaceae are a major New World plant family and popular in horticulture. Still, taxonomic units and species limits have been difficult to define, and molecular phylogenetic studies so far have yielded largely unresolved trees, so relationships within Cactaceae remain insufficiently understood. This study focuses on the predominantly epiphytic tribe Rhipsalideae and evaluates the utility of a spectrum of plastid genomic regions. • METHODS: We present a phylogenetic study including 52 of the 53 Rhipsalideae species and all the infraspecific taxa. Seven regions (trnK intron, matK, rbcL, rps3-rpl16, rpl16 intron, psbA-trnH, trnQ-rps16), ca. 5600 nucleotides (nt) were sequenced per sample. The regions used were evaluated for their phylogenetic performance and performance in DNA-based species recognition based on operational taxonomic units (OTUs) defined beforehand. • KEY RESULTS: The Rhipsalideae are monophyletic and contain five clades that correspond to the genera Rhipsalis, Lepismium, Schlumbergera, Hatiora, and Rhipsalidopsis. The species-level tree was well resolved and supported; the rpl16 and trnK introns yielded the best phylogenetic signal. Although the psbA-trnH and trnQ-rps16 spacers were the most successful individual regions for OTU identification, their success rate did not significantly exceed 70%. The highest OTU identification rate of 97% was found using the combination of psbA-trnH, rps3-rpl16, trnK intron, and trnQ-rps16 as a minimum possible marker length (ca. 1660 nt). • CONCLUSIONS: The phylogenetic performance of a marker is not determined by the level of sequence variability, and species discrimination power does not necessarily correlate with phylogenetic utility.


Asunto(s)
Cactaceae/genética , Marcadores Genéticos , Cartilla de ADN , ADN de Plantas/genética , Genes de Plantas
9.
Proc Biol Sci ; 277(1692): 2271-80, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20335215

RESUMEN

Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.


Asunto(s)
Biodiversidad , Ecosistema , Calentamiento Global , Modelos Biológicos , Desarrollo de la Planta , Modelos Lineales
10.
Mol Phylogenet Evol ; 56(2): 768-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20226867

RESUMEN

The carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae) comprises at least 22 species distributed in South and Central America as well as in Africa (including Madagascar). It has only recently been shown to be a true carnivore, specialized in protozoa and other small soil organisms. Here we present a statistically highly supported phylogeny of Genlisea based on three chloroplast loci. The most recent common ancestor of Genlisea most likely was of Neotropical origin and characterized by pedicels that are recurved in fruit, a strongly glandular inflorescence, and bivalvate capsule dehiscence. The further evolution of various morphological characters during the diversification of the genus is discussed. The two previously suggested subgenera Tayloria and Genlisea correspond to the two major clades found in our analyses. In subgenus Genlisea, three clades can be clearly distinguished based on molecular and morphological characters and on biogeographic patterns, which led us to propose a new sectional classification.


Asunto(s)
Evolución Molecular , Magnoliopsida/genética , Filogenia , ADN de Cloroplastos/genética , ADN de Plantas/genética , Geografía , Magnoliopsida/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADN
11.
Langmuir ; 25(24): 14116-20, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19634871

RESUMEN

More than 400 million years of evolution of land plants led to a high diversity of adapted surface structures. Superhydrophobic biological surfaces are of special interest for the development of biomimetic materials for self-cleaning, drag reduction, and energy conservation. The key innovation in superhydrophobic biological surfaces is hierarchical sculpturing. In plants, a hydrophobic wax coating creates water-repelling surfaces that in combination with two or more levels of sculpturing leads to superhydrophobicity. Hierarchical structuring is of special interest for technical "biomimetic" materials with low adhesion and self-cleaning properties. Here we introduce hierarchical surface sculptures of plants with up to six levels. The article gives an overview of the composition of hierarchical surfaces for superhydrophobicity and their use as models for the development of artificial self-cleaning or drag-reducing surfaces.


Asunto(s)
Materiales Biomiméticos/química , Interacciones Hidrofóbicas e Hidrofílicas , Hojas de la Planta/fisiología , Biomimética/métodos , Propiedades de Superficie
12.
Langmuir ; 25(22): 13077-83, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19899819

RESUMEN

The contact area between liquids and solid surfaces plays the crucial role in the wetting and self-cleaning properties of surfaces. In this study, we have developed a cryo-preparation method to visualize the contact area between liquids and superhydrophobic biological surfaces by scanning electron microscopy. Aqueous liquids that do not crystallize during freezing, such as glycerol and phosphoric acid, were used. First, the samples in contact with the liquid droplets were cooled with liquid nitrogen. After this, the droplets were separated and the contact areas on the frozen droplets were visualized by scanning electron microscopy. The contact areas of droplets on various biological and artificial surfaces with microstructure, nanostructure, and hierarchical structures are shown in detail. It could be shown that spaces between nanostructures were not penetrated by the droplet, which rested only on top of the structures. Measurements of the contact areas showed the largest reduction in the solid-liquid contact area on hierarchically structured leaf surfaces. On these surfaces, the droplets are in the "Cassie state" at both levels of surface structuring. On plant surfaces, the varying height of the epidermal cells and the surface relief caused considerable variations in the contact between droplet and surface. The examples demonstrate that this new approach provides detailed insights into the wetting behavior of surfaces in the Cassie state with partial contact with the liquid.


Asunto(s)
Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Rastreo/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
13.
Conserv Biol ; 23(4): 911-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19210304

RESUMEN

Epiphytes are diverse and important elements of tropical forests, but as canopy-dwelling organisms, they are highly vulnerable to deforestation. To assess the effect of deforestation on epiphyte diversity and the potential for epiphyte conservation in anthropogenically transformed habitats, we surveyed the epiphytic vegetation of an Ecuadorian cloud forest reserve and its surroundings. Our study was located on the western slopes of the Andes, a global center of biodiversity. We sampled vascular epiphytes of 110 study plots in a continuous primary forest; 14 primary forest fragments; isolated remnant trees in young, middle-aged, and old pastures; and young and old secondary forests. It is the first study to include all relevant types of habitat transformation at a single study site and to compare epiphyte diversity at different temporal stages of fragmentation. Epiphyte diversity was highest in continuous primary forest, followed by forest fragments and isolated remnant trees, and lowest in young secondary forests. Spatial parameters of habitat transformation, such as fragment area, distance to the continuous primary forest, or distance to the forest edge from inside the forest, had no significant effect on epiphyte diversity. Hence, the influence of dispersal limitations appeared to be negligible or appeared to operate only over very short distances, whereas microclimatic edge effects acted only in the case of completely isolated trees, but not in larger forest fragments. Epiphyte diversity increased considerably with age of secondary forests, but species assemblages on isolated remnant trees were impoverished distinctly with time since isolation. Thus, isolated trees may serve for recolonization of secondary forests, but only for a relatively short time. We therefore suggest that the conservation of even small patches of primary forest within agricultural landscape matrices is essential for the long-term maintenance of the high epiphyte diversity in tropical cloud forests.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Árboles , Humanos , América del Sur
14.
Beilstein J Nanotechnol ; 10: 459-466, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873316

RESUMEN

Angiosperms and their pollinators are adapted in a close co-evolution. For both the plants and pollinators, the functioning of the visual signaling system is highly relevant for survival. As the frequency range of visual perception in many insects extends into the ultraviolet (UV) region, UV-patterns of plants play an important role in the flower-pollinator interaction. It is well known that many flowers contain UV-absorbing pigments in their petal cells, which are localized in vacuoles. However, the contribution of the petal surface microarchitecture to UV-reflection remains uncertain. The correlation between the surface structure and its reflective properties is also relevant for biomimetic applications, for example, in the field of photovoltaics. Based on previous work, we selected three model species with distinct UV-patterns to explore the possible contribution of the surface architecture to the UV-signaling. Using a replication technique, we transferred the petal surface structure onto a transparent polymer. Upon illumination with UV-light, we observed structural-based patterns in the replicas that were surprisingly comparable to those of the original petals. For the first time, this experiment has shown that the parameters of the surface structure lead to an enhancement in the amount of absorbed UV-radiation. Spectrophotometric measurements revealed up to 50% less reflection in the UV-absorbing regions than in the UV-reflecting areas. A comparative characterization of the micromorphology of the UV-reflecting and UV-absorbing areas showed that, in principle, a hierarchical surface structure results in more absorption. Therefore, the results of our experiments demonstrate the structural-based amplification of UV-reflection and provide a starting point for the design of bioinspired antireflective and respectively strongly absorbing surfaces.

15.
Ecol Lett ; 11(2): 116-27, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18036182

RESUMEN

Islands harbour a significant portion of all plant species worldwide. Their biota are often characterized by narrow distributions and are particularly susceptible to biological invasions and climate change. To date, the global richness pattern of islands is only poorly documented and factors causing differences in species numbers remain controversial. Here, we present the first global analysis of 488 island and 970 mainland floras. We test the relationship between island characteristics (area, isolation, topography, climate and geology) and species richness using traditional and spatial models. Area is the strongest determinant of island species numbers (R(2) = 0.66) but a weaker predictor for mainlands (R(2) = 0.25). Multivariate analyses reveal that all investigated variables significantly contribute to insular species richness with area being the strongest followed by isolation, temperature and precipitation with about equally strong effects. Elevation and island geology show relatively weak yet significant effects. Together these variables account for 85% of the global variation in species richness.


Asunto(s)
Biodiversidad , Plantas/genética , Evolución Biológica , Ambiente , Geografía , Dinámica Poblacional
16.
Beilstein J Nanotechnol ; 9: 468-481, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515959

RESUMEN

The time dependence of the formation of lotus wax tubules after recrystallization from various chloroform-based solutions on an HOPG surface at room temperature was studied by atomic force microscopy (magnetic AC mode) taking series of consecutive images of the formation process. The growth of the tubules oriented in an upright fashion follows a sequential rodlet→ring→tubule behavior. The influence of a number of factors, e.g., different wax concentration in chloroform, the additional presence of water, or salts [(NH4)2SO4, NH4NO3] or a mixture of salt/water in the solution on the growth rate and orientation of the tubules is also investigated. Different wax concentrations were found to have no effect on the growth rate or the orientation of tubules in none of the solutions. The presence of water, however, considerably increased the growth rate of tubule formation, while the presence of salt was again found to have no effect on growth rate or orientation of tubules.

17.
Beilstein J Nanotechnol ; 9: 3039-3047, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30591851

RESUMEN

In technical systems, static pressure and pressure changes are usually measured with piezoelectric materials or solid membranes. In this paper, we suggest a new biomimetic principle based on thin air layers that can be used to measure underwater pressure changes. Submerged backswimmers (Notonecta sp.) are well known for their ability to retain air layers on the surface of their forewings (hemelytra). While analyzing the hemelytra of Notonecta, we found that the air layer on the hemelytra, in combination with various types of mechanosensitive hairs (clubs and pins), most likely serve a sensory function. We suggest that this predatory aquatic insect can detect pressure changes and water movements by sensing volume changes of the air layer under water. In the present study, we used a variety of microscopy techniques to investigate the fine structure of the hemelytra. Furthermore, we provide a biomimetic proof of principle to validate our hypothesis. The suggested sensory principle has never been documented before and is not only of interest for sensory biologists but can also be used for the development of highly sensitive underwater acoustic or seismographic sensory systems.

18.
Beilstein J Nanotechnol ; 8: 1671-1679, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28875104

RESUMEN

Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect) are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air-water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM) method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids) have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air-water interface of submerged hierarchically structured (micro-pillars) surfaces by AFM in contact mode. By scanning with zero resulting force applied, we were able to determine the shape of the interface and thereby the depth of the water penetrating into the underlying structures. This approach is complemented by a second method: the interface was scanned with different applied force loads and the height for zero force was determined by linear regression. These methods open new possibilities for the investigation of air-retaining surfaces, specifically in terms of measuring contact area and in comparing different coatings, and thus will lead to the development of new applications.

19.
Nanomicro Lett ; 9(2): 23, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30464998

RESUMEN

An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology for this diversity is provided. Simplified, the functions of plant surface characteristics may be grouped into six categories: (1) mechanical properties, (2) influence on reflection and absorption of spectral radiation, (3) reduction of water loss or increase of water uptake, moisture harvesting, (4) adhesion and non-adhesion (lotus effect, insect trapping), (5) drag and turbulence increase, or (6) air retention under water for drag reduction or gas exchange (Salvinia effect). This list is far from complete. A short overview of the history of bionics and the impressive spectrum of existing and anticipated biomimetic applications are provided. The major challenge for engineers and materials scientists, the durability of the fragile nanocoatings, is also discussed.

20.
Bioinspir Biomim ; 11(5): 056003, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27529805

RESUMEN

The cleanup of accidental oil spills in water is an enormous challenge; conventional oil sorbents absorb large amounts of water in addition to oil and other cleanup methods can cause secondary pollution. In contrast, fresh leaves of the aquatic ferns Salvinia are superhydrophobic and superoleophilic, and can selectively absorb oil while repelling water. These selective wetting properties are optimal for natural oil absorbent applications and bioinspired oil sorbent materials. In this paper we quantify the oil absorption capacity of four Salvinia species with different surface structures, water lettuce (Pistia stratiotes) and Lotus leaves (Nelumbo nucifera), and compare their absorption capacity to artificial oil sorbents. Interestingly, the oil absorption capacities of Salvinia molesta and Pistia stratiotes leaves are comparable to artificial oil sorbents. Therefore, these pantropical invasive plants, often considered pests, qualify as environmentally friendly materials for oil spill cleanup. Furthermore, we investigated the influence of oil density and viscosity on the oil absorption, and examine how the presence and morphology of trichomes affect the amount of oil absorbed by their surfaces. Specifically, the influence of hair length and shape is analyzed by comparing different hair types ranging from single trichomes of Salvinia cucullata to complex eggbeater-shaped trichomes of Salvinia molesta to establish a basis for improving artificial bioinspired oil absorbents.


Asunto(s)
Organismos Acuáticos/ultraestructura , Restauración y Remediación Ambiental/métodos , Helechos/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Contaminación por Petróleo , Hojas de la Planta/ultraestructura , Contaminación del Agua , Araceae/ultraestructura , Nelumbo/ultraestructura , Hojas de la Planta/química , Viscosidad , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA