Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 225(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35786780

RESUMEN

Squids maneuver to capture prey, elude predators, navigate complex habitats and deny rivals access to mates. Despite the ecological importance of this essential locomotive function, limited quantitative data on turning performance and wake dynamics of squids are available. To better understand the contribution of the jet, fins and arms to turns, the role of orientation (i.e. arms first versus tail first) in maneuvering, and the relationship between jet flow and turning performance, kinematic and 3D velocimetry data were collected in tandem from brief squid, Lolliguncula brevis. The pulsed jet, which can be vectored to direct flows, was the primary driver of most turning behaviors, producing flows with the highest impulse magnitude and angular impulse about the main axis of the turn (yaw) and secondary axes (roll and pitch). The fins and keeled arms played subordinate but important roles in turning performance, contributing to angular impulse, stabilizing the maneuver along multiple axes and/or reducing rotational resistance. Orientation affected turning performance and dynamics, with tail-first turns being associated with greater impulse and angular impulse, longer jet structures, higher jet velocities and greater angular turning velocities than arms-first turns. Conversely, arms-first turns involved shorter, slower jets with less impulse, but these directed short pulses resulted in lower minimum length-specific turning radii. Although the length-to-diameter ratio (L/D) of ejected jet flow was a useful metric for characterizing vortical flow features, it, by itself, was not a reliable predictor of angular velocity or turning radii, which reflects the complexity of the squid multi-propulsor system.


Asunto(s)
Decapodiformes , Natación , Aletas de Animales , Animales , Fenómenos Biomecánicos , Reología
2.
J Exp Biol ; 221(Pt 14)2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29789404

RESUMEN

Squid, which swim using a coupled fin/jet system powered by muscular hydrostats, pose unique challenges for the study of locomotion. The high flexibility of the fins and complex flow fields generated by distinct propulsion systems require innovative techniques for locomotive assessment. For this study, we used proper orthogonal decomposition (POD) to decouple components of the fin motions and defocusing digital particle tracking velocimetry (DDPTV) to quantify the resultant 3D flow fields. Kinematic footage and DDPTV data were collected from brief squid, Lolliguncula brevis [3.1-6.5 cm dorsal mantle length (DML)], swimming freely in a water tunnel at speeds of 0.39-7.20 DML s-1 Both flap and wave components were present in all fin motions, but the relative importance of the wave components was higher for arms-first swimming than for tail-first swimming and for slower versus higher speed swimming. When prominent wave components were present, more complex interconnected vortex ring wakes were observed, while fin movements dominated by flapping resulted in more spatially separated vortex ring patterns. Although the jet often produced the majority of the thrust for steady rectilinear swimming, our results demonstrated that the fins can contribute more thrust than the jet at times, consistently produce comparable levels of lift to the jet during arms-first swimming, and can boost overall propulsive efficiency. By producing significant drag signatures, the fins can also aid in stabilization and maneuvering. Clearly, fins play multiple roles in squid locomotion, and when coupled with the jet, allow squid to perform a range of swimming behaviors integral to their ecological success.


Asunto(s)
Aletas de Animales/fisiología , Decapodiformes/fisiología , Locomoción , Animales , Fenómenos Biomecánicos , Cinética , Movimiento (Física) , Reología , Natación
3.
J Exp Biol ; 220(Pt 5): 908-919, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28167806

RESUMEN

Although squid are generally considered to be effective predators, little is currently known of how squid maneuver and position themselves during prey strikes. In this study, high-speed video and kinematic analyses were used to study attacks by the brief squid Lolliguncula brevis on both shrimp and fish. Squid attack success was high (>80%) and three behavioral phases were identified: (1) approach, (2) strike and (3) recoil. Lolliguncula brevis demonstrated greater maneuverability (i.e. a smaller length-specific turning radius) and employed more body adjustments (i.e. mantle angle posturing) during approaches toward shrimp versus fish. Squid exhibited higher linear approach/strike velocities and accelerations with faster-swimming fish prey compared with slower shrimp prey. Agility (i.e. turning rate) during prey encounters was comparable to performance extremes observed during non-predatory turns, and did not differ according to prey type or distance. Despite having the ability to modulate tentacle extension velocity, squid instead increased their own swimming velocity rather than increasing tentacle velocity when targeting faster fish prey during the strike phase, but this was not the case for shrimp prey. Irrespective of prey type, L. brevis consistently positioned themselves above the prey target prior to the tentacle strike, possibly to facilitate a more advantageous downward projection of the tentacles. During the recoil, L. brevis demonstrated length-specific turning radii similar to those recorded during the approach despite vigorous escape attempts by some prey. Clearly, turning performance is integral to prey attacks in squid, with differences in attack strategy varying depending on the prey target.


Asunto(s)
Cyprinidae/fisiología , Decapodiformes/fisiología , Palaemonidae/fisiología , Conducta Predatoria , Animales , Fenómenos Biomecánicos , Natación
4.
J Exp Biol ; 219(Pt 18): 2870-2879, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27401756

RESUMEN

Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid.

5.
J Exp Biol ; 219(Pt 9): 1317-26, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26944502

RESUMEN

Although steady swimming has received considerable attention in prior studies, unsteady swimming movements represent a larger portion of many aquatic animals' locomotive repertoire and have not been examined extensively. Squids and cuttlefishes are cephalopods with unique muscular hydrostat-driven, dual-mode propulsive systems involving paired fins and a pulsed jet. These animals exhibit a wide range of swimming behavior, but turning performance has not been examined quantitatively. Brief squid, Lolliguncula brevis, and dwarf cuttlefish, Sepia bandensis, were filmed during turns using high-speed cameras. Kinematic features were tracked, including the length-specific radius of the turn (R/L), a measure of maneuverability, and angular velocity (ω), a measure of agility. Both L. brevis and S. bandensis demonstrated high maneuverability, with (R/L)min values of 3.4×10(-3)±5.9×10(-4) and 1.2×10(-3)±4.7×10(-4) (mean±s.e.m.), respectively, which are the lowest measures of R/L reported for any aquatic taxa. Lolliguncula brevis exhibited higher agility than S. bandensis (ωa,max=725.8 versus 485.0 deg s(-1)), and both cephalopods have intermediate agility when compared with flexible-bodied and rigid-bodied nekton of similar size, reflecting their hybrid body architecture. In L. brevis, jet flows were the principal driver of angular velocity. Asymmetric fin motions played a reduced role, and arm wrapping increased turning performance to varying degrees depending on the species. This study indicates that coordination between the jet and fins is important for turning performance, with L. brevis achieving faster turns than S. bandensis and S. bandensis achieving tighter, more controlled turns than L. brevis.


Asunto(s)
Decapodiformes/fisiología , Sepia/fisiología , Aletas de Animales/anatomía & histología , Aletas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Tamaño Corporal , Decapodiformes/anatomía & histología , Sepia/anatomía & histología , Natación
6.
J Exp Biol ; 219(Pt 3): 392-403, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26643088

RESUMEN

Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (<2.0 DML s(-1)) to counteract negative buoyancy. Propulsive efficiency (η) increased with speed irrespective of swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors.


Asunto(s)
Aletas de Animales/fisiología , Decapodiformes/fisiología , Natación , Animales , Fenómenos Biomecánicos , Reología , Grabación en Video
7.
J Exp Biol ; 217(Pt 14): 2437-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24744416

RESUMEN

Cephalopods have visual and mechanoreception systems that may be employed to sense and respond to an approaching predator. While vision presumably plays the dominant role, the importance of the lateral line analogue for predator evasion has not been examined in cephalopods. To test the respective roles of vision and the lateral line analogue, brief squid, Lolliguncula brevis, were observed in the presence of summer flounder, Paralichthys dentatus, under light and dark conditions with their lateral line analogue intact and ablated. Hair cell ablation was achieved through a pharmacological technique used for the first time on a cephalopod. The proportion of predator-prey interactions survived was significantly higher in the light non-ablated and light ablated groups compared with the dark ablated group. The mean number of interactions survived varied across treatment groups with the light non-ablated group having significantly more success than the light ablated, dark non-ablated and dark ablated groups. These findings demonstrate that although vision is the primary sense, the lateral line analogue also contributes to predator evasion in squid.


Asunto(s)
Decapodiformes/fisiología , Mecanorreceptores/fisiología , Visión Ocular/fisiología , Animales , Lenguado , Luz , Neomicina/toxicidad , Conducta Predatoria
8.
J Exp Biol ; 217(Pt 14): 2580-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24855679

RESUMEN

Sea turtles reside in different acoustic environments with each life history stage and may have different hearing capacity throughout ontogeny. For this study, two independent yet complementary techniques for hearing assessment, i.e. behavioral and electrophysiological audiometry, were employed to (1) measure hearing in post-hatchling and juvenile loggerhead sea turtles Caretta caretta (19-62 cm straight carapace length) to determine whether these migratory turtles exhibit an ontogenetic shift in underwater auditory detection and (2) evaluate whether hearing frequency range and threshold sensitivity are consistent in behavioral and electrophysiological tests. Behavioral trials first required training turtles to respond to known frequencies, a multi-stage, time-intensive process, and then recording their behavior when they were presented with sound stimuli from an underwater speaker using a two-response forced-choice paradigm. Electrophysiological experiments involved submerging restrained, fully conscious turtles just below the air-water interface and recording auditory evoked potentials (AEPs) when sound stimuli were presented using an underwater speaker. No significant differences in behavior-derived auditory thresholds or AEP-derived auditory thresholds were detected between post-hatchling and juvenile sea turtles. While hearing frequency range (50-1000/1100 Hz) and highest sensitivity (100-400 Hz) were consistent in audiograms pooled by size class for both behavior and AEP experiments, both post-hatchlings and juveniles had significantly higher AEP-derived than behavior-derived auditory thresholds, indicating that behavioral assessment is a more sensitive testing approach. The results from this study suggest that post-hatchling and juvenile loggerhead sea turtles are low-frequency specialists, exhibiting little differences in threshold sensitivity and frequency bandwidth despite residence in acoustically distinct environments throughout ontogeny.


Asunto(s)
Umbral Auditivo/fisiología , Conducta Animal/fisiología , Potenciales Evocados Auditivos , Audición/fisiología , Tortugas/fisiología , Estimulación Acústica , Animales , Audiometría/métodos , Condicionamiento Operante , Ambiente , Pruebas Auditivas , Tortugas/crecimiento & desarrollo , Agua
10.
Integr Comp Biol ; 63(6): 1266-1276, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37381578

RESUMEN

Neural input is critical for establishing behavioral output, but understanding how neuromuscular signals give rise to behaviors remains a challenge. In squid, locomotion through jet propulsion underlies many key behaviors, and the jet is mediated by two parallel neural pathways, the giant and non-giant axon systems. Much work has been done on the impact of these two systems on jet kinematics, such as mantle muscle contraction and pressure-derived jet speed at the funnel aperture. However, little is known about any influence these neural pathways may have on the hydrodynamics of the jet after it leaves the squid and transfers momentum to the surrounding fluid for the animal to swim. To gain a more comprehensive view of squid jet propulsion, we made simultaneous measurements of neural activity, pressure inside the mantle cavity, and wake structure. By computing impulse and time-averaged forces from the wake structures of jets associated with giant or non-giant axon activity, we show that the influence of neural pathways on jet kinematics could extend to hydrodynamic impulse and force production. Specifically, the giant axon system produced jets with, on average, greater impulse magnitude than those of the non-giant system. However, non-giant impulse could exceed that of the giant system, evident by the graded range of its output in contrast to the stereotyped nature of the giant system. Our results suggest that the non-giant system offers flexibility in hydrodynamic output, while recruitment of giant axon activity can provide a reliable boost when necessary.


Asunto(s)
Decapodiformes , Hidrodinámica , Animales , Decapodiformes/fisiología , Natación/fisiología , Locomoción/fisiología , Axones/fisiología
11.
J Exp Biol ; 213(Pt 12): 2009-24, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20511514

RESUMEN

Although the pulsed jet is often considered the foundation of a squid's locomotive system, the lateral fins also probably play an important role in swimming, potentially providing thrust, lift and dynamic stability as needed. Fin morphology and movement vary greatly among squid species, but the locomotive role of the fins is not well understood. To begin to elucidate the locomotive role of the fins in squids, fin hydrodynamics were studied in the brief squid Lolliguncula brevis, a species that exhibits a wide range of fin movements depending on swimming speed. Individual squid were trained to swim in both the arms-first and tail-first orientations against currents in a water tunnel seeded with light-reflective particles. Particle-laden water around the fins was illuminated with lasers and videotaped so that flow dynamics around the fins could be analyzed using digital particle image velocimetry (DPIV). Time-averaged forces generated by the fin were quantified from vorticity fields of the fin wake. During the low swimming speeds considered in this study [<2.5 dorsal mantle lengths (DML) per second], L. brevis exhibited four unique fin wake patterns, each with distinctive vortical structures: (1) fin mode I, in which one vortex is shed with each downstroke, generally occurring at low speeds; (2) fin mode II, an undulatory mode in which a continuous linked chain of vortices is produced; (3) fin mode III, in which one vortex is shed with each downstroke and upstroke, and; (4) fin mode IV, in which a discontinuous chain of linked double vortex structures is produced. All modes were detected during tail-first swimming but only fin modes II and III were observed during arms-first swimming. The fins produced horizontal and vertical forces of varying degrees depending on stroke phase, swimming speed, and swimming orientation. During tail-first swimming, the fins functioned primarily as stabilizers at low speeds before shifting to propulsors as speed increased, all while generating net lift. During arms-first swimming, the fins primarily provided lift with thrust production playing a reduced role. These results demonstrate the lateral fins are an integral component of the complex locomotive system of L. brevis, producing lift and thrust forces through different locomotive modes.


Asunto(s)
Estructuras Animales/fisiología , Decapodiformes/anatomía & histología , Decapodiformes/fisiología , Agua/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Natación/fisiología
12.
Biol Open ; 9(11)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32973078

RESUMEN

Throughout their lives, squids are both predators and prey for a multitude of animals, many of which are at the top of ocean food webs, making them an integral component of the trophic structure of marine ecosystems. The escape jet, which is produced by the rapid expulsion of water from the mantle cavity through a funnel, is central to a cephalopod's ability to avoid predation throughout its life. Although squid undergo morphological and behavioral changes and experience remarkably different Reynolds number regimes throughout their development, little is known about the dynamics and propulsive efficiency of escape jets throughout ontogeny. We examine the hydrodynamics and kinematics of escape jets in squid throughout ontogeny using 2D/3D velocimetry and high-speed videography. All life stages of squid produced two escape jet patterns: (1) 'escape jet I' characterized by short rapid pulses resulting in vortex ring formation and (2) 'escape jet II' characterized by long high-volume jets, often with a leading-edge vortex ring. Paralarvae exhibited higher propulsive efficiency than adult squid during escape jet ejection, and propulsive efficiency was higher for escape jet I than escape jet II in juveniles and adults. These results indicate that although squid undergo major ecological transitions and morphology changes from paralarvae to adults, all life stages demonstrate flexibility in escape jet responses and produce escape jets of surprisingly high propulsive efficiency.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Decapodiformes/anatomía & histología , Decapodiformes/fisiología , Conducta Predatoria , Factores de Edad , Animales , Fenómenos Biomecánicos , Reacción de Fuga , Modelos Teóricos , Reología , Natación
14.
J Exp Biol ; 212(Pt 12): 1889-903, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483007

RESUMEN

The dynamics of pulsed jetting in squids throughout ontogeny is not well understood, especially with regard to the development of vortex rings, which are common features of mechanically generated jet pulses (also known as starting jets). Studies of mechanically generated starting jets have revealed a limiting principle for vortex ring formation characterized in terms of a ;formation number' (F), which delineates the transition between the formation of isolated vortex rings and vortex rings that have; pinched off' from the generating jet. Near F, there exists an optimum in pulse-averaged thrust with (potentially) low energetic cost, raising the question: do squids produce vortex rings and if so, do they fall near F, where propulsive benefits presumably occur? To better understand vortex ring dynamics and propulsive jet efficiency throughout ontogeny, brief squid Lolliguncula brevis ranging from 3.3 to 9.1 cm dorsal mantle length (DML) and swimming at speeds of 2.43-22.2 cms(-1) (0.54-3.50 DMLs(-1)) were studied using digital particle image velocimetry (DPIV). A range of jet structures were observed but most structures could be classified as variations of two principal jet modes: (1) jet mode I, where the ejected fluid rolled up into an isolated vortex ring; and (2) jet mode II, where the ejected fluid developed into a leading vortex ring that separated or ;pinched off' from a long trailing jet. The ratio of jet length [based on the vorticity extent (L(omega))] to jet diameter [based on peak vorticity locations (D(omega))] was <3.0 for jet mode I and >3.0 for jet mode II, placing the transition between modes in rough agreement with F determined in mechanical jet studies. Jet mode II produced greater time-averaged thrust and lift forces and was the jet mode most heavily used whereas jet mode I had higher propulsive efficiency, lower slip, shorter jet periods and a higher frequency of fin activity associated with it. No relationship between L(omega)/D(omega) and speed was detected and there was no apparent speed preference for the jet modes within the speed range considered in this study; however, propulsive efficiency did increase with speed partly because of a reduction in slip and jet angle with speed. Trends in higher slip, lower propulsive efficiency and higher relative lift production were observed for squid <5.0 cm DML compared with squid >/=5.0 cm DML. While these trends were observed when jet mode I and II were equally represented among the size classes, there was also greater relative dependence on jet mode I than jet mode II for squid <5.0 cm DML when all of the available jet sequences were examined. Collectively, these results indicate that approximately 5.0 cm DML is an important ontogenetic transition for the hydrodynamics of pulsed jetting in squids. The significance of our findings is that from early juvenile through to adult life stages, L. brevis is capable of producing a diversity of vortex ring-based jet structures, ranging from efficient short pulses to high-force longer duration pulses. Given that some of these structures had L(omega)/D(omega)s near F, and F represented the delineation between the two primary jet modes observed, fluid dynamics probably played an integral role in the evolution of squid locomotive systems. When this flexibility in jet dynamics is coupled with the highly versatile fins, which are capable of producing multiple hydrodynamic modes as well, it is clear that squid have a locomotive repertoire far more complex than originally thought.


Asunto(s)
Decapodiformes/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos
15.
J Exp Biol ; 212(Pt 10): 1506-18, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19411544

RESUMEN

Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsive efficiency of paralarval jetting within the intermediate Re realm. To better understand paralarval jet dynamics, we used digital particle image velocimetry (DPIV) and high-speed video to measure bulk vortex properties (e.g. circulation, impulse, kinetic energy) and other jet features [e.g. average and peak jet velocity along the jet centerline (U(j) and U(jmax), respectively), jet angle, jet length based on the vorticity and velocity extents (L(omega) and L(V), respectively), jet diameter based on the distance between vorticity peaks (D(omega)), maximum funnel diameter (D(F)), average and maximum swimming speed (U and U(max), respectively)] in free-swimming Doryteuthis pealeii paralarvae (1.8 mm dorsal mantle length) (Re(squid)=25-90). Squid paralarvae spent the majority of their time station holding in the water column, relying predominantly on a frequent, high-volume, vertically directed jet. During station holding, paralarvae produced a range of jet structures from spherical vortex rings (L(omega)/D(omega)=2.1, L(V)/D(F)=13.6) to more elongated vortex ring structures with no distinguishable pinch-off (L(omega)/D(omega)=4.6, L(V)/D(F)=36.0). To swim faster, paralarvae increased pulse duration and L(omega)/D(omega), leading to higher impulse but kept jet velocity relatively constant. Paralarvae produced jets with low slip, i.e. ratio of jet velocity to swimming velocity (U(j)/U or U(jmax)/U(max)), and exhibited propulsive efficiency [eta(pd)=74.9+/-8.83% (+/-s.d.) for deconvolved data] comparable with oscillatory/undulatory swimmers. As slip decreased with speed, propulsive efficiency increased. The detection of high propulsive efficiency in paralarvae is significant because it contradicts many studies that predict low propulsive efficiency at intermediate Re for inertial forms of locomotion.


Asunto(s)
Decapodiformes/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos
16.
Integr Comp Biol ; 48(6): 720-33, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21669828

RESUMEN

Squids encounter vastly different flow regimes throughout ontogeny as they undergo critical morphological changes to their two locomotive systems: the fins and jet. Squid hatchlings (paralarvae) operate at low and intermediate Reynolds numbers (Re) and typically have rounded bodies, small fins, and relatively large funnel apertures, whereas juveniles and adults operate at higher Re and generally have more streamlined bodies, larger fins, and relatively small funnel apertures. These morphological changes and varying flow conditions affect swimming performance in squids. To determine how swimming dynamics and propulsive efficiency change throughout ontogeny, digital particle image velocimetry (DPIV) and kinematic data were collected from an ontogenetic range of long-finned squid Doryteuthis pealeii and brief squid Lolliguncula brevis swimming in a holding chamber or water tunnel (Re = 20-20 000). Jet and fin wake bulk properties were quantified, and propulsive efficiency was computed based on measurements of impulse and excess kinetic energy in the wakes. Paralarvae relied predominantly on a vertically directed, high frequency, low velocity jet as they bobbed up and down in the water column. Although some spherical vortex rings were observed, most paralarval jets consisted of an elongated vortical region of variable length with no clear pinch-off of a vortex ring from the trailing tail component. Compared with paralarvae, juvenile and adult squid exhibited a more diverse range of swimming strategies, involving greater overall locomotive fin reliance and multiple fin and jet wake modes with better defined vortex rings. Despite greater locomotive flexibility, jet propulsive efficiency of juveniles/adults was significantly lower than that of paralarvae, even when juvenile/adults employed their highest efficiency jet mode involving the production of periodic isolated vortex rings with each jet pulse. When the fins were considered together with the jet for several juvenile/adult swimming sequences, overall propulsive efficiency increased, suggesting that fin contributions are important and should not be overlooked in analyses of the swimming performance of squids. The fins produced significant thrust and consistently had higher propulsive efficiency than did the jet. One particularly important area of future study is the determination of coordinated jet/fin wake modes that have the greatest impact on propulsive efficiency. Although such research would be technically challenging, requiring new, powerful, 3D approaches, it is necessary for a more comprehensive assessment of propulsive efficiency of the squid dual-mode locomotive system.

17.
J Exp Biol ; 208(Pt 2): 327-44, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15634852

RESUMEN

Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms: they produce trimming self-correcting forces, which we measured directly using the force balance. These data together with previous work on smooth trunkfish indicate that body-induced vortical flows are a common mechanism that is probably significant for trim control in all species of tropical boxfishes.


Asunto(s)
Modelos Anatómicos , Natación/fisiología , Tetraodontiformes/anatomía & histología , Tetraodontiformes/fisiología , Animales , Fenómenos Biomecánicos , Equilibrio Postural , Presión , Reología , Especificidad de la Especie
18.
Integr Comp Biol ; 42(5): 971-80, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21680378

RESUMEN

Boxfishes (Teleostei: Ostraciidae) are rigid-body, multi-propulsor swimmers that exhibit unusually small amplitude recoil movements during rectilinear locomotion. Mechanisms producing the smooth swimming trajectories of these fishes are unknown, however. Therefore, we have studied the roles the bony carapaces of these fishes play in generating this dynamic stability. Features of the carapaces of four morphologically distinct species of boxfishes were measured, and anatomically-exact stereolithographic models of the boxfishes were constructed. Flow patterns around each model were investigated using three methods: 1) digital particle image velocimetry (DPIV), 2) pressure distribution measurements, and 3) force balance measurements. Significant differences in both cross-sectional and longitudinal carapace morphology were detected among the four species. However, results from the three interrelated approaches indicate that flow patterns around the various carapaces are remarkably similar. DPIV results revealed that the keels of all boxfishes generate strong longitudinal vortices that vary in strength and position with angle of attack. In areas where attached, concentrated vorticity was detected using DPIV, low pressure also was detected at the carapace surface using pressure sensors. Predictions of the effects of both observed vortical flow patterns and pressure distributions on the carapace were consistent with actual forces and moments measured using the force balance. Most notably, the three complementary experimental approaches consistently indicate that the ventral keels of all boxfishes, and in some species the dorsal keels as well, effectively generate self-correcting forces for pitching motions-a characteristic that is advantageous for the highly variable velocity fields in which these fishes reside.

19.
J Exp Biol ; 206(Pt 4): 725-44, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12517990

RESUMEN

The hydrodynamic bases for the stability of locomotory motions in fishes are poorly understood, even for those fishes, such as the rigid-bodied smooth trunkfish Lactophrys triqueter, that exhibit unusually small amplitude recoil movements during rectilinear swimming. We have studied the role played by the bony carapace of the smooth trunkfish in generating trimming forces that self-correct for instabilities. The flow patterns, forces and moments on and around anatomically exact, smooth trunkfish models positioned at both pitching and yawing angles of attack were investigated using three methods: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. Models positioned at various pitching angles of attack within a flow tunnel produced well-developed counter-rotating vortices along the ventro-lateral keels. The vortices developed first at the anterior edges of the ventro-lateral keels, grew posteriorly along the carapace, and reached maximum circulation at the posterior edge of the carapace. The vortical flow increased in strength as pitching angles of attack deviated from 0 degrees, and was located above the keels at positive angles of attack and below them at negative angles of attack. Variation of yawing angles of attack resulted in prominent dorsal and ventral vortices developing at far-field locations of the carapace; far-field vortices intensified posteriorly and as angles of attack deviated from 0 degrees. Pressure distribution results were consistent with the DPIV findings, with areas of low pressure correlating well with regions of attached, concentrated vorticity. Lift coefficients of boxfish models were similar to lift coefficients of delta wings, devices that also generate lift through vortex generation. Furthermore, nose-down and nose-up pitching moments about the center of mass were detected at positive and negative pitching angles of attack, respectively. The three complementary experimental approaches all indicate that the carapace of the smooth trunkfish effectively generates self-correcting forces for pitching and yawing motions--a characteristic that is advantageous for the highly variable velocity fields experienced by trunkfish in their complex aquatic environment. All important morphological features of the carapace contribute to producing the hydrodynamic stability of swimming trajectories in this species.


Asunto(s)
Peces/anatomía & histología , Peces/fisiología , Actividad Motora/fisiología , Animales , Procesamiento de Imagen Asistido por Computador , Modelos Biológicos , Movimiento , Presión , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA