Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 15(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36431729

RESUMEN

MgF2-coated screws made of a Mg-2Y-1Mn-1Zn alloy, called NOVAMag® fixation screws (biotrics bioimplants AG), were tested in vitro for potential applications as biodegradable implants, and showed a controlled corrosion rate compared to non-coated screws. While previous studies regarding coated Mg-alloys have been carried out on flat sample surfaces, the present work focused on functional materials and final biomedical products. The substrates under study had a complex 3D geometry and a nearly cylindrical-shaped shaft. The corrosion rate of the samples was investigated using an electrochemical setup, especially adjusted to evaluate these types of samples, and thus, helped to improve an already patented coating process. A MgF2/MgO coating in the µm-range was characterized for the first time using complementary techniques. The coated screws revealed a smoother surface than the non-coated ones. Although the cross-section analysis revealed some fissures in the coating structure, the electrochemical studies using Hanks' salt solution demonstrated the effective role of MgF2 in retarding the alloy degradation during the initial stages of corrosion up to 24 h. The values of polarization resistance (Rp) of the coated samples extrapolated from the Nyquist plots were significantly higher than those of the non-coated samples, and impedance increased significantly over time. After 1200 s exposure, the Rp values were 1323 ± 144 Ω.cm2 for the coated samples and 1036 ± 198 Ω.cm2 for the non-coated samples, thus confirming a significant decrease in the degradation rate due to the MgF2 layer. The corrosion rates varied from 0.49 mm/y, at the beginning of the experiment, to 0.26 mm/y after 1200 s, and decreased further to 0.01 mm/y after 24 h. These results demonstrated the effectiveness of the applied MgF2 film in slowing down the corrosion of the bulk material, allowing the magnesium-alloy screws to be competitive as dental and orthopedic solutions for the biodegradable implants market.

2.
Bioact Mater ; 14: 15-30, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35310352

RESUMEN

An ideal fixation system for guided bone (GBR) regeneration in oral surgery must fulfil several criteria that includes the provision of adequate mechanical fixation, complete resorption when no longer needed, complete replacement by bone, as well as be biocompatible and have a good clinical manageability. For the first time, a biodegradable magnesium fixation screw made of the magnesium alloy WZM211 with a MgF2 coating has been designed and tested to fulfill these criteria. Adequate mechanical fixation was shown for the magnesium fixation screw in several benchtop tests that directly compared the magnesium fixation screw with an equivalent polymeric resorbable device. Results demonstrated slightly superior mechanical properties of the magnesium device in comparison to the polymeric device even after 4 weeks of degradation. Biocompatibility of the magnesium fixation screw was demonstrated in several in vitro and in vivo tests. Degradation of the magnesium screw was investigated in in vitro and in vivo tests, where it was found that the screw is resorbed slowly and completely after 52 weeks, providing adequate fixation in the early critical healing phase. Overall, the magnesium fixation screw demonstrates all of the key properties required for an ideal fixation screw of membranes used in guided bone regeneration (GBR) surgeries.

3.
Cardiovasc Interv Ther ; 32(1): 36-47, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27139179

RESUMEN

In a European consortium, a decellularized tissue-engineered heart valve (dTEHV) based on vessel-derived cells, a fast-degrading scaffold and a self-expanding stent has been developed. The aim of this study was to demonstrate that percutaneous delivery is feasible. To implant this valve prosthesis transcutaneously into pulmonary position, a catheter delivery system was designed and custom made. Three sheep underwent transjugular prototype implantation. Intracardiac echocardiography (ICE), angiography and computed tomography (CT) were applied to assess the position, morphology, function and dimensions of the stented dTEHV. One animal was killed 3 h after implantation and two animals were followed up for 12 weeks. Explanted valves were analyzed macroscopically and microscopically. In all animals, the percutaneous implantation of the stented dTEHV was successful. The prototype delivery system worked at first attempt in all animals. In the first implantation a 22 F system was used: the valve was slightly damaged during crimping. Loading was difficult due to valve-catheter mismatch in volume. In the second and third implantation a 26 F system was used: the valves fitted adequately and stayed intact. Following implantation, these two valves showed moderate regurgitation due to insufficient coaptation. During follow-up, regurgitation increased due to shortened leaflets. At explantation, macroscopic and microscopic analysis confirmed the second and third valve to be intact. Histology revealed autologous recellularization of the decellularized valve after 12 weeks in vivo. It was demonstrated that completely in vitro tissue-engineered heart valves are thin and stable enough to be crimped and implanted transvenously into pulmonary position.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/cirugía , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Prótesis Valvulares Cardíacas , Válvula Pulmonar/cirugía , Ingeniería de Tejidos , Angiografía , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Diseño de Equipo , Estudios de Factibilidad , Enfermedades de las Válvulas Cardíacas/diagnóstico , Diseño de Prótesis , Válvula Pulmonar/diagnóstico por imagen , Ovinos , Tomografía Computarizada por Rayos X
4.
Ann Biomed Eng ; 44(9): 2683-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26864537

RESUMEN

Transcatheter heart valve implantation is an emerging technology and an alternative to surgical valve replacement. Most existing systems consist of valves sewn into balloon-expandable stents with a delivery catheter functioning with the specific valve only. The aim of this study was to develop a universally applicable delivery system (DS) for plane stents, valves sewn into both balloon-expandable and self-expandable stents and feasible for use with different access routes. A DS was designed and manufactured in five different diameters. The requirements were derived from the implants, the implantation technique and the cardiovascular geometry of the experimental sheep. The combination of a self-expandable Nitinol stent and a jugular access point represented the major challenge as both flexibility and rigidity of the DS were required. To fulfill these contradicting mechanical properties the sheaths were comprised of a soft outer polymer tube with a stainless steel coiled spring inside. Tissue-engineered and pericardial pulmonary valves were implanted. Also polymeric and balloon-expandable stents were delivered to various positions in the vascular system. The initial success rate was 70.5%. After refinement of the DS, a success rate of 83.3% was achieved with the remaining failed implantations resulting from inadequate sizes of the prostheses.


Asunto(s)
Cateterismo Cardíaco , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Válvula Pulmonar/cirugía , Animales , Cateterismo Cardíaco/instrumentación , Cateterismo Cardíaco/métodos , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Implantación de Prótesis de Válvulas Cardíacas/métodos , Humanos , Ovinos
5.
EuroIntervention ; 12(1): 62-70, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27173864

RESUMEN

AIMS: The objective was to implant a stented decellularised tissue-engineered heart valve (sdTEHV) percutaneously in an animal model, to assess its in vivo functionality and to examine the repopulation and remodelling of the valvular matrix by the recipient's autologous cells. METHODS AND RESULTS: Prototypes of sdTEHV were cultured in vitro, decellularised and percutaneously implanted into the pulmonary position in 15 sheep. Functionality was assessed monthly by intracardiac echocardiography (ICE). Valves were explanted after eight, 16 or 24 weeks and analysed macroscopically, histologically and by electron microscopy. Implantation was successful in all animals. Valves showed normal pressure gradients throughout the study. Due to a suboptimal design with small coaptation area, stent ovality led to immediate regurgitation which continuously increased during follow-up. Analyses revealed complete endothelialisation and rapid cellular repopulation and remodelling of the entire matrix. Valves were free from endocarditis, calcification and graft rejection. CONCLUSIONS: sdTEHV can be safely implanted percutaneously. The fast autologous recellularisation and the extensive matrix remodelling demonstrate the valve's potential as a next-generation percutaneous prosthesis with the capacity for tissue self-maintenance and longevity. Regurgitation may be prevented by valve design optimisation.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Válvulas Cardíacas/cirugía , Válvula Pulmonar/cirugía , Animales , Implantación de Prótesis de Válvulas Cardíacas/métodos , Modelos Animales , Válvula Pulmonar/fisiopatología , Ovinos , Factores de Tiempo , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA