Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 288(47): 33745-33759, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24108130

RESUMEN

Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus ß subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors.


Asunto(s)
Regulación de la Expresión Génica , Rigidez Muscular/metabolismo , Mutación Missense , Receptores de Glicina/metabolismo , Sustitución de Aminoácidos , Femenino , Humanos , Masculino , Rigidez Muscular/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Glicina/genética
2.
Gene ; 508(1): 117-20, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22980072

RESUMEN

A case of neonatal diagnosis of 49,XXXXY syndrome is presented. Clinical identification was prompted by a bilateral thickening of the radioulnar joints and X-ray imaging disclosing almost complete radioulnar synostosis. Conventional karyotyping was initiated and revealed a karyotype of 49,XXXXY. Previously reported neonatal symptoms such as low birth weight, muscular hypotonia, or genital malformations were absent in this case. Microsatellite analysis showed two different X chromosomes each present in two copies, supporting that the four X chromosomes had arisen from a nondisjunction in maternal meiosis I followed by a second nondisjunction involving both X chromosomes in meiosis II. Multidisciplinary follow-up was organised to ensure timely recognition of associated complications. Early awareness of the diagnosis may offer a potential benefit regarding outcome.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Cromosomas Humanos X/genética , Músculo Esquelético/anomalías , Músculo Esquelético/patología , Tamizaje Neonatal , Extremidad Superior/patología , Humanos , Recién Nacido , Masculino , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA