Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 20(1): 306, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611317

RESUMEN

BACKGROUND: Gibberellin (GA) is one of the most essential phytohormones that modulate plant growth and development. Jute (Corchorus sp.) is the second most important source of bast fiber. Our result has shown that exogenous GA can positively regulate jute height and related characteristics which mean increasing endogenous GA production will help to get a jute variety with improved characteristics. However, genes involved in jute GA biosynthesis have not been analyzed precisely. RESULTS: Genome-wide analysis identified twenty-two candidate genes involved in jute GA biosynthesis pathway. Among them, four genes- CoCPS, CoKS, CoKO and CoKAO work in early steps. Seven CoGA20oxs, three CoGA3oxs, and eight GA2oxs genes work in the later steps. These genes were characterized through phylogenetic, motif, gene structure, and promoter region analysis along with chromosomal localization. Spatial gene expression analysis revealed that 11 GA oxidases were actively related to jute GA production and four of them were marked as key regulators based on their expression level. All the biosynthesis genes both early and later steps showed tissue specificity. GA oxidase genes were under feedback regulation whereas early steps genes were not subject to such regulation. CONCLUSION: Enriched knowledge about jute GA biosynthesis pathway and genes will help to increase endogenous GA production in jute by changing the expression level of key regulator genes. CoGA20ox7, CoGA3ox2, CoGA2ox3, and CoGA2ox5 may be the most important genes for GA production.


Asunto(s)
Corchorus/genética , Corchorus/metabolismo , Giberelinas/metabolismo , Ontología de Genes , Genes de Plantas , Estudio de Asociación del Genoma Completo , Giberelinas/química , Modelos Moleculares , Anotación de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas
2.
J Genet Eng Biotechnol ; 20(1): 28, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147846

RESUMEN

BACKGROUND: Plant grows in nature facing various types of abiotic stresses for their normal growth and development. During abiotic stress, plants evolve different types of mechanisms to survive in a hostile environment. Phospholipase D (PLD) plays important role in the regulation of diverse cellular processes including stress responses in plants. Member of PLD genes are well studied in different model plants; however, their functions in the jute are not clear yet. RESULT: In the present study, a total of 12 and 11 PLD genes were identified in the genome of C. capsularis and C. olitorius, respectively. The presence of the two conserved HKD motifs in PLD genes except for CoPLDδ-2 in jute suggests their strong lipase activity. Twenty different motifs were found in the identified PLD genes, and PLD-ß1, PLD-γ1, and all members of PLD-δ1 of both jute species contained the highest number of motifs. Phylogenetic analysis showed the close evolutionary relationship among the five groups of jute PLD proteins along with the PLD proteins from Arabidopsis. Tissue-specific expression pattern of PLDα1-2, PLD-α2, PLDß1, PLDγ1, and PLDδ1 of two jute species suggested their involvement in plant growth and development. However, the expression pattern of PLDα1-2, PLDα1-3, PLD-α4, PLDδ1, and PLDδ3 indicated their association during waterlogging stress. In addition, PLD-α2, PLDß1, and PLDδ2 seemed to be involved in drought stress as well as salinity stress. CONCLUSION: This genome-wide identification of jute PLD genes from C. capsularis and C. olitorius will help to further functional characterization of the PLD genes for developing stress-tolerant jute variety.

3.
J Genet Eng Biotechnol ; 19(1): 46, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761027

RESUMEN

BACKGROUND: In fungi, like other eukaryotes, protein turnover is an important cellular process for the controlling of various cellular functions. The ubiquitin-proteasome pathway degrades some selected intracellular proteins and F-box proteins are one of the important components controlling protein degradation. F-box proteins are well studied in different model plants however, their functions in the fungi are not clear yet. This study aimed to identify the genes involved in protein degradation for disease development in the Macrophomina phaseolina fungus. RESULTS: In this research, in silico studies were done to understand the distribution of F-box proteins in pathogenic fungi including Macrophomina phaseolina fungus. Genome-wide analysis indicates that M. phaseolina fungus contained thirty-one F-box proteins throughout its chromosomes. In addition, there are 17, 37, 16, and 21 F-box proteins have been identified from Puccinia graminis, Colletotrichum graminicola, Ustilago maydis, and Phytophthora infestans, respectively. Analyses revealed that selective fungal genomes contain several additional functional domains along with F-box domain. Sequence alignment showed the substitution of amino acid in several F-box proteins; however, gene duplication was not found among these proteins. Phylogenetic analysis revealed that F-box proteins having similar functional domain was highly diverse form each other showing the possibility of various function. Analysis also found that MPH_00568 and MPH_05531 were closely related to rice blast fungus F-box protein MGG_00768 and MGG_13065, respectively, may play an important role for blast disease development. CONCLUSION: This genome-wide analysis of F-box proteins will be useful for characterization of candidate F-box proteins to understand the molecular mechanisms leading to disease development of M. phaseolina in the host plants.

4.
Plant Signal Behav ; 13(10): e1529522, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30289381

RESUMEN

Waterlogging stress has two phases like waterlogging phase and post-waterlogging phase where both are injurious to plants. Susceptible plants normally die at post-waterlogging phase due to damaged root system, sudden rexoygenation, dehydration and photoinhibition of the desubmerged tissues. Formation of reactive oxygen species (ROS) is the main result of reoxygenation stress that can cause oxidative damage of the functional tissues responsible for normal physiological activities. There are almost all types of hormones responsible to recover plants from these destructive phenomenons. Among these hormones ethylene and abscisic acid (ABA) are the main regulators to overcome the reoxygenation and drought like stresses in plants at post-waterlogging condition. The balanced crosstalk among the hormones is highly important for the survival of plants at these stresses. So this paper is completely a precise summary of hormonal homeostasis of post-waterlogged plants through physiological, biochemical and signaling pathways.


Asunto(s)
Plantas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA